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Motivation

• Age is the biggest known risk factor for most neurodegenerative disorders
Alzheimer’s disease, Parkinson’s disease, and others

• Causes irreversible structural damage 

• Early detection
Effective interventions

Preventing brain damage
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Hou, Yujun, et al. "Ageing as a risk factor for neurodegenerative disease." Nature Reviews Neurology (2019)



Motivation
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Alzheimer’s disease (AD) is a multi-factorial disorder

1. Brain structure damage can be quantified 
using T1w-MRI

2. AD pathogenesis starts with amyloid-beta (Aβ) deposition
Brain damage  Aβ plaques

PET tracers (FBP, PiB, others) help quantify early AD onset

pet = positron emission tomography; FBP = florbetapir; PiB = pittsburgh compound B



Motivation
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Deep learning based Brain Age prediction
Models lack precision, show age-related systematic bias

Medical Image compression
Codebook collapse, reconstruction fidelity, practical utility

PET Imaging Super-Resolution
Quantifying Aβ deposition

(more details in later slides)

Phase II

Phase I

Phase III

Multimodal

ReconstructedOriginal



Phase I: Brain Age prediction

Aging in humans is complex

• Biological aging ≠ chronological aging
brain can age faster or slower

• Variations in individuals
due to genetic, environmental, neurological 
predispositions
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Dataset
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• Lifespan cohort (7,377) 3D MRIs Healthy 
• IXI, ABIDE, ICBM,  NACC and OASIS (public)

• age [8-95]

• Discovery cohort (1,584) 3D MRIs Healthy/MCI/AD
• ADNI database

• age [55-98]

• Train: Val: Test = 80: 10: 10
(stratified on age groups 8-12, 12-16, …)



Existing Gaps

Models are not accurate!

• Age-related systematic bias
Young subjects are over-estimated; under-estimation in Old

Inherent to regressiona

• Well observedb, not due to

Model selection, imbalance, heterogeneityb

Current approaches → post-hoc correction

• Most Alzheimer’s patients are age > 50

Hypothesis: Age prediction as regression causes regression-to-mean (RTM)
  → Leading to systematic bias
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aGardner, M. J., and J. A. Heady. "Some effects of within-person variability in epidemiological studies." Journal of Chronic Diseases (1973)
bLiang, Hualou et al. “Investigating systematic bias in brain age estimation with application to post‐traumatic stress disorders”. Human Brain Mapping (2019)

ResNet-18 (regression) model trained 
on 6617 HC, tested on 760 HC



Regression as Classification
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MAE=3.33

Avg(∆age)= -3.6

Avg(∆age)=1.1

SB-L

SB-R

MAE=3.93

Avg(∆age)=3.17

Avg(∆age)= -2.49

Measuring Systematic Bias:
One standard deviation from mean: systematic bias-left 𝜇 − 𝜎  and right , (𝜇 + 𝜎) [SB-L, SB-R]

SB-L

SB-R



Ordinality
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MSE
Ordinality score: 0.99

Cross Entropy
Ordinality score: 0.31

Classification beats Regression
Due to ability to learn high entropy 
discriminative feature representationa

But lacks ordinality!
Cross entropy treats each class independent 
from each other

Ex: Patient of Age 52 misclassified as 
      51 vs.14 hampers clinical decision making

aZhang, Shihao, et al. "Improving Deep Regression with Ordinal Entropy." ICLR (2023)

• C = {1, 2, … (c-1)} where c is #classes
• X = {x1, x2, …, xn} – penultimate layer features

• Fc = {f1, f2, …, fc} – feature centroids

Manhattan distances between f1 and other feature 
centroids

• D = {d12, d13, …, d1c}

Ordinality score = Pearson (𝐷, 𝐶)



How to preserve Ordinality in Classification?

Phase I
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• While reducing RTM bias

• And improving age prediction



ORDER loss
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Aim: Ordinal information from target space (age) 
into learned feature space (z)

To guarantee:

Regularization:

ORDER – ORdinal Distance Encoded Regularization

Cross Entropy:

Manhattan distance (L1 norm) is consistently 
preferable than the Euclidean distance (L2 norm) for 
high-dimensional data

Aggarwal, Charu C., et al. "On the surprising behavior of distance 
metrics in high dimensional space." Database theory—ICDT (2001)



ORDER loss
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Shah, Jay, et al. "Ordinal classification with distance regularization for robust brain age prediction." 
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2024.



Methods
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• Baseline loss functions

• 3D ResNet-18

• Stratified oversampling [8-12, 12-16, …]

• 100 epochs, AdamW opt, batch size=4

• LR=1e-3, weight decay=1e-2

Method (Loss)

Regression MSE

MSE + Euclidean norma

Classification CE

CE + mean-varianceb

Ours CE + ORDER

CE=cross entropy
MSE=mean squared error

aZhang, Shihao, et al. "Improving Deep Regression with Ordinal Entropy." ICLR (2023).
bPan, Hongyu, et al. "Mean-variance loss for deep age estimation from a face." CVPR (2018).



Results

On Lifespan (healthy) cohort
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Embedding space analysis (512-dim)

MSE MSE + Euclidean 
Norm

Cross Entropy Mean-Variance 
Loss

Cross Entropy 
+ ORDER



Results

On Lifespan (healthy) cohort
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Method (Loss) MAE Ordinality Systematic Bias

SB-L SB-R

Regression MSE 3.93 0.99 3.4 -4.2

MSE + Euclidean norm 4.57 0.95 4.8 -4.1

Classification CE 3.33 0.31 1.1 -3.6

CE + mean-variance 2.65 0.58 0.4 -4.2

Ours CE + ORDER 2.56 0.98 0.1 -2.5



Results

On Discovery (mixed) cohort
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Method (Loss) Healthy
(1)

HC conv MCI
(2)

MCI-stable
(3)

MCI conv AD
(4)

AD
(5)

Pearson 
Correlation

Reg MSE -1.2 -0.8 -0.3 0.8 1.5 0.98

MSE + Euclidean norm -2.7 -1.9 -1.7 -0.9 0.9 0.94

CLS CE -1.9 -1.5 -3.4 -2.3 -4.1 -0.75

CE + mean-variance -1.6 -0.3 -0.5 0.8 2.8 0.94

Ours CE + ORDER -1.5 -0.7 -0.3 1.2 2.0 0.98

Correlation with 
disease severity

5 clinical groups with increasing order of severity

Healthy 
controls
(N=678)

Healthy conv to 
MCI

(N=179)

Stable 
MCI

(N=432)

MCI 
conv to AD

(N=139)

AD

(N=156)



MSE vs. ORDER
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More accurate for early detection

Statistical significances between clinical groups as 
p-values on predicted BrainAGE

➢ MSE – disruptive trend
➢ CE + ORDER – consistent trend



Headache detection
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PTH = Post Traumatic Headache

*in-house data collected from Mayo Clinic, Arizona

Findings: 

• Δage(P-PTH) < Δage(A-PTH)
suggesting more structural decline related to PTH 
persistence over time 

• Headache frequency associated with structural 
damage

Δage(P-PTH) > Δage(Mig) > Δage(A-PTH) 

• Early detection potential
structural decline acutely following TBI at risk for 
developing persistent PTH

Shah, Jay, et al. "Capturing MRI Signatures of Brain Age as a Potential Biomarker to 
Predict Persistence of Post-traumatic Headache (S20. 006)." Neurology. Vol. 102. No. 
17_supplement_1. Hagerstown, MD: Lippincott Williams & Wilkins, 2024.



Findings

1. Cross-entropy learn high-entropy (discriminative) feature representation
To reduce RTM bias from regression

2. ORDER loss can preserve ordinality in feature space
To improve overall prediction accuracy

3. Model achieved MAE=2.56 on Healthy
Compared to 3.93 (MSE), 35% improvement

Biomarker reliability

4. Can detect subtle difference in clinical groups
Crucial for early detection (Alzheimer’s & Headache)

06/18/25 Dissertation Defense | Jay Shah 26



Locality Constrained Vector Quantization

Neural Image Compression
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Motivation

• Rapid growth of medical imaging in modern medicine

Petabytes (PB) of MRI data generated annually

Radiology data at Stanford grew by ~450 TB per yeara 

Requires: Network bandwidth & Storage

• Efficient compression matters
1. Storage burden

FreeSurfer processed image: 16-60 MB 

Entire folder: 300-370 MB

2. Impractical for telemedicineb

Limited bandwidth (rural or mobile)
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aMesterhazy, Joseph et al. "High performance on-demand de-identification 
of a petabyte-scale medical imaging data lake." arXiv preprint (2020).

bElhadad, Ahmed, et al. "Reduction of NIFTI files storage and compression 
to facilitate telemedicine services based on quantization hiding of 
downsampling approach." Scientific Reports (2024)



Image Compression

Lossless

• Huffman coding
~3.7:1 on DICOM

Cannot exploit spatial correlationsa

• JPEG-LS
2-3x on MRIb

• gzip
~30–40% on NIfTI

nontrivial CPU overhead 

Not ideal for real-time telemedicine

Lossy

• DCT based JPG
Scalar quantization introduces artifactsc 

Loss of anatomical info (edges)

• JPEG2000
Limited real utility 

Info loss at higher ratesd

• 3D wavelet + DWT-VQ
Volumetrics wavelets improve distortion

Lacks end-to-end optimization

Heavy compute coste

29

aRahmat, Romi Fadillah et al. “Analysis of DICOM Image Compression Alternative 
Using Huffman Coding.” Journal of healthcare engineering 17 Jun. 2019
bhttps://dicom.nema.org/medical/dicom/current/output/chtml/part05/sect_8.2.3.html

cLuo, Ying et al. "Removing the blocking artifacts of block-based DCT compressed images." IEEE 
transactions on Image Processing (2003)
dDennison, Don et al.. "Informatics challenges—lossy compression in medical imaging." Journal 
of Digital Imaging (2014)
eBruylants, Tim et al. "Wavelet based volumetric medical image compression." Signal processing: 
Image communication (2015)



Neural Image compression

• Auto-Encoders (AE)
Latent maps via MSE

Blurry reconstructions and no entropy coding 
control

• Variational AE (VAE)
KL regularization for smoothness

Suffers from blurriness

• Vector-Quantizaed VAE
Discrete codebooks reduce blur
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• VQVAE consists:
1. Analysis transform: 𝑦 = 𝑔𝑎 𝑥

2. Quantization:  ො𝑦 = 𝑄 𝑦

3. Entropy coding

4. Synthesis transform:  ො𝑥 = 𝑔𝑠 ො𝑦  

• Traditional methods focus on:

• entropy coding (3), 

• ignoring quantization step (2) 

→ Euclidean Nearest Neighbor  



Revisiting Quantization

• Encoder → continuous latent vector ez, 
quantized to nearest codebook entry ek via Euclidean

• Commitment loss term ∥ sg[ze]−ek*∥ 
encourages encoder outputs close to their assigned 
embeddings 
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• Codebook update: minimizing the average Euclidean distance to the batch of 
assigned encoder outputs, 

effectively K-means–style centroid updates

Observation: Reliance on plain Euclidean distance treats all latent 
dimensions equally and ignores their covariancea

Euclidean 
distance

aMimmack, Gillian M., Simon J. Mason, and Jacqueline S. Galpin. "Choice of distance matrices in cluster analysis: Defining regions." Journal of climate (2001)

Van Den Oord, Aaron, and Oriol Vinyals. "Neural discrete representation learning."
Advances in NeurIPS (2017).



Brain Imaging Gen (existing work)

• Generates morphology preserving synthetic MRIs
• Stage-1: VQVAE to compress

• Stage-2: Autoregressive transformer 
for conditional generation (age, sex, etc.)

We use this VQVAE as baseline
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Tudosiu, Petru-Daniel, et al. "Realistic morphology-preserving generative modelling of the brain." Nature Machine Intelligence (2024)

Data FID MS-SSIM

UKBB 0.0026 0.67 ± 0.05

ADNI 0.0075 0.69 ± 0.07

Novelties:

1. Freq domain sharpness (Anatomy):

𝑀𝑆𝐸 𝑋, ෠𝑋 + 𝑀𝑆𝐸 𝐹𝐹𝑇(𝑋), 𝐹𝐹𝑇( ෠𝑋 )

2. Perceptual loss (Stability):
2D AlexNet-based LPIPS

3. PatchGAN adversarial term (Realism)
Discriminator (LSGAN)



Dataset
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• Lifespan cohort (7,932) 3D MRIs Healthy 
• IXI, ABIDE, ICBM,  NACC and OASIS (public)

• age [18-93]

• Discovery cohort (9,913) 3D MRIs Healthy/MCI/AD
• ADNI database

• age [49-98]



Reconstructed MRIs
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K=1 K=2 K=3

K → kth nearest codebook element using Euclidean distance
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K=4 K=5 K=15

K → kth nearest codebook element using Euclidean distance

Reconstructed MRIs



06/18/25 Dissertation Defense | Jay Shah 36

K=25 K=35 K=45

K → kth nearest codebook element using Euclidean distance

Reconstructed MRIs



Empirical observations

• Codebook neighborhoods encode coherent semantic information

• Codebook is underutilizeda (79/2048 ~ 4%) 

1. Locality constrained Linear coding (Wang et al., 2010)
replaces hard VQ in Bag-of-Features 

each descriptor → into its local coordinate system (K nearest bases)

• How to extend LLC to deep neural nets?

2. Improving Codebook Utilization

• How local-structure/feature-covariance improve codebook usage?
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Wang, Jinjun, et al. "Locality-constrained linear coding for image 
classification." IEEE computer society conference on CVPR, 2010.

Category Cons Names

Regularization & Reset Agnostic to the local geometry 
of latent space

HVQ-VAE, Jukebox

Soft & Stochastic Quantization Random/poor selection of codes SQVAE, Affine Reparam, 
CVQ-VAE, Gumbel

aHuh, Minyoung, et al. "Straightening out the straight-
through estimator: Overcoming optimization challenges in 
vector quantized networks." ICML, 2023.



Locality Constrained Vector Quantization

Neural Image Compression
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1. Locality informed soft-quantization

2. Optimal codebook usage



Proposed method

Locality constrained VQ (LCVQ)

Problem: Euclidean nearest-neighbor ignores latent covariance

Goal: Leverage local latent geometry via Mahalanobis distance to improve codebook 
utilization and reconstruction fidelity
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LCVQ

1. Center codebook & calculate covariance
• How latent dimensions co‐vary across embeddings

2. Mahalanobis distance to each ci

• Prioritizes codewords that lie along high‐variance axes

3. Top-K selection & aggregation
• Instead of a single “hard” nearest neighbor, average the K 

most “informative” neighbors under the true geometry
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Richer Representations  → Leverages local neighborhoods in covariance‐adjusted space.

Higher Codebook Utilization → Spreads assignments across more embeddings

Smoother Reconstructions → Soft aggregation reduces quantization artifacts, anatomical errors.



Results (Reconstruction)

Methods MSE (10-3) ↓ MS-SSIM ↑ Perplexity ↑

VQ-VAEa 2.01 0.9421 66.5

w/ Affineb 2.12 0.9419 63.1

w/ LCVQ (k=15) 1.20 0.9684 368.9

w/ Affineb + LCVQ (k=15) 1.52 0.9602 354.9
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Perplexity → codebook usage

Given a distribution q over codebook 
entries, the perplexity is defined as:

Original

Predictions
(LCVQ)

aTudosiu, Petru-Daniel, et al. "Realistic morphology-
preserving generative modelling of the brain." Nature 
Machine Intelligence (2024)

bHuh, Minyoung, et al. "Straightening out the straight-
through estimator: Overcoming optimization challenges in 
vector quantized networks." ICML, 2023.



Results (Downstream)
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Data MAE (years) Training time

Raw Imaging 
(w/o quantization)

5.10 ~ 4 days

Quantized Imaging 
(LCVQ)

5.32 ~ 15 minutes

Data MAE (years) Brain Age delta (years)

AD ↑ MCI HC ↓ All AD ↑ MCI HC ↓ All

Raw Imaging 
(w/o quantization)

5.93 4.93 4.58 5.00 3.01 -0.14 -2.15 -0.21

Quantized Imaging 
(LCVQ)

6.01 4.53 4.29 4.73 3.43 0.50 -1.56 0.36

AD=Alzheimer’s disease, MCI=mild cognitive impairment, HC=healthy controls

Raw Imaging   → (176, 208, 176)
Quantized Imaging → (11, 13, 11)

Compression ratio  → 4096: 1

Brain Age prediction

On Lifespan (healthy) 

On Discovery (Unhealthy)



Future work

k in 
VQVAE + LCVQ

MSE 
(10-3) ↓

MS-SSIM ↑ Perplexity ↑

5 1.40 0.9652 391.9

15 1.20 0.9684 368.9

25 1.21 0.9678 330.5

50 1.32 0.9679 329.2

75 1.32 0.9672 258.7

100 1.44 0.9627 295.3
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Adaptive 
(k=15, α=10)

1.81 0.9544 316.94

Ablation studies (k)

• k=5 → perplexity ↑ (tight neighborhood)

• k=100 → MSE ↑ SSIM ↓ (diffuse neighborhood)

Adaptive k via χ² Thresholding

Squared Mahalanobis distance follows a chi-squared 
dist with D degrees of freedoma: 

𝑑𝑀
2 𝑥, 𝑐𝑖 = 𝑥 − 𝑐𝑖

𝑇σ−1 𝑥 − 𝑐𝑖  ~ χ𝐷
2

Thresholding:

𝜏2 =  χ𝐷
2 1 − 𝛼 , 𝒩𝜏 𝑥 = {𝑐𝑖|𝑑𝑀

2 𝑥, 𝑐𝑖 ≤ 𝜏2}

If |𝒩𝜏| = 0, revert to top-k

• Outperforms very large k 
• Underperforms fixed-15 on some metrics
• α and k need refinement.

ahttps://en.wikipedia.org/wiki/Mahalanobis\_distance



Findings

1. Locality constrained quantization
Co-variance aware distance for high entropy codeword selection

Addresses codebook collapse

2. Top-k codeword aggregation
Reduce quantization artifacts, capture data diversity

3. Retains downstream performance
Lesser computation cost

4. Use cases
Low resource settings, federated learning, storage optimization
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Improving PET quantification using 
Deep Learning

Medical Image Super-resolution
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Motivation
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Chételat, Gaël, et al. "Amyloid-PET and 18F-FDG-PET in 
the diagnostic investigation of AD and other 
dementias." The Lancet Neurology (2020)

Amyloid PET

1. Measures amyloid beta (Aβ) protein deposits in brain

2. Detect pathological changes earlier than clinical symptoms (~15 yrs)

Comparison

▪ MRI shows general neurodegeneration
Amyloid PET is more specific to AD pathology

▪ Amyloid PET can detect earlier pathological changes than MRI



Motivation

(1) Low Spatial Resolution
Scanners at 4-6 mm FWHM – partial volume effect (PVE)

Size of the object is smaller than twice the FWHM of scanner

1. Underestimation of radiotracer uptake
Especially in small brain structures

2. Spillover between GM, WM, and CSF
Within tissue variability complicates correction

3. Longitudinal tracking
Hampers monitoring disease progression
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T1w MRI PET (FBP)



Motivation

(2) Lack of Standardization

• Multiple PET tracers exista

florbetapir (FBP), florbetaben (FBB), flutemetamol, and NAV4694

• Cross-tracer variability
Tracer-dependent characteristics leads to inconsistencies

Lack of consensus in multi-center studiesa
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Super-Resolution
 
• To address PVE (due to low-res)
• To reduce inter-tracer variability

aShah, Jay, et al. "Deep residual inception encoder‐decoder network for amyloid PET 
harmonization." Alzheimer's & Dementia (2022)



Existing Gaps

Partial Volume Correction (PVC)

1. Iterative deconvolution methods

• Unblur image by estimating & removing PSF of imaging

• Iteratively deconvolve using the estimated PSF

2. Challenges

• Noise amplification

• Low resolution recovery

• These are region-based approaches

Ideal is voxel-level resolution recovery
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Low Spatial Resolution 
of PET Imaging

Tohka, Jussi, and Anthonin Reilhac. "Deconvolution-based partial volume correction in 
Raclopride-PET and Monte Carlo comparison to MR-based method." Neuroimage (2008)



Existing Gaps

Cross-tracer Harmonization

1. Paired image-to-image translation
• Cross-tracer translation

2. Challenges

• Can’t generalize to other tracers

• Loss of tracer-specific information

• Requires paired datasets

• Bias from imperfect translation
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Lack of Standardization

Shah, Jay, et al. "Deep residual inception 
encoder‐decoder network for amyloid PET 
harmonization." Alzheimer's & Dementia 18.12 
(2022): 2448-2457.



Improving PET quantification using 
Diffusion model based Super-resolution

Phase III
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Objectives

1. Improve absolute quantification

2. Detect longitudinal changes (progression)

3. Improve cross-tracer Harmonization



Data Simulation

Ground truth high resolution PET does not exist!

Data Simulation – based on PET imaging physics
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T1w MRI Digital 
Phantom

Simulated 
FBP/PiB

~1 mm ~8 mm



Digital Phantoms
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V=f_gm*gmv + f_wm*wmv + f_csf*csfv + f_bg*bgv + f_gm*abetav

Tracer 1 (PIB)
gmv ~ (1, 0.04)
wmv ~ (2.2, 0.066)
csfmv ~ (0.05, 0.001)
bgv = nt1v*.7
abetav ~ (0.5, 0.1)

f_gm+f_wm+f_csf+f_bg = 1
Cerebellum-Cortex abeta = 0
Brain-Stem abeta = 0 
Normalize to Cerebellum-Cortex
MCSUVR=TargetROI/Cerebellum-Cortex

Tracer 2 (FBP)
gm2=gm1

wm2=1.2*wm1
csf2=csf1

bg2 = 1.2*bg1
abeta2 =0.75*abeta1

Su, Yi, et al. "Partial volume correction in quantitative 
amyloid imaging." Neuroimage (2015)



Simulated PET
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smoothing
forward projection

add noise
reconstruction

smoothing

Digital Phantom
(dpPIB)

Simulated PET
(spPIB)



Diffusion Models
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▪ Diffusion Models outperform GANs in medical imaging 
synthesisa

o More diversity, stable training, conditioning strategies
o Limited by computation complexity

▪ Latent diffusion models

o Denoising in latent space
o Ideal for medical imaging (2563 dim data)

▪ Ideal for Super-Resolution

aKhader, Firas, et al. "Denoising diffusion probabilistic models for 3D medical image 
generation." Scientific Reports (2023)

Rombach, Robin, et al. "High-resolution image synthesis with latent 
diffusion models." CVPR (2022)

Pinaya, Walter HL, et al. "Brain imaging generation with latent diffusion 
models." MICCAI Workshop on Deep Gen Models (2022)



Method (baseline)
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AutoencoderKL (3D)a

• Attention layers only at last level
• 32 base channels, with multiplier of [1,2,2] 
• one residual block per level
• latent space [16×16×16], 3 latent channels. 
• 80 training epochs, minibatch of 60
• Adam optimizer, base lr=0.0001.
• patch-based discriminator in our adversarial loss with 

32 base channels, lr=0.0001.

aPinaya, Walter HL, et al. "Brain imaging generation with latent 
diffusion models." MICCAI Workshop on Deep Gen Models (2022)

LDM (3D)
• U-net architecture, 32 base channels, multiplier of [1,2,2]  
• one residual block per level 
• 9 input channels (3 each for simFBP, simDP, MRI latents). 
• Adam optimizer with a base lr=0.0001. 
• DDPM scheduler with 1000 timesteps (training), with a 

linear variance schedule (0.0015, 0.0195) 
• DDIM scheduler with 250 timesteps (inference)



Preliminary results
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Inputs:   low-res PET, T1 MRI
Diffusion-Unet: L2 loss on noise scale (𝜖, Ƹ𝜖) 

Observations

1. Minimizing loss on noise-scale does not 
guarantee accurate image-scale reconstruction

2. Cannot retain (brain) structure information 

3. Combination of L1/L2 and MS-SSIMb loss is more 
suitable for image restoration/super-resolutiona

• L2 can be sensitive to outliers
• L1 suffers non-differentiability at zero

Preserving structure & voxel level intensity is key 
to PET Quantification accuracy!

aZhao, Hang, et al. "Loss functions for image restoration with neural networks." IEEE 
Transactions on computational imaging (2016)
bMS-SSIM=multi scale structural similarity index



Method
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ෝ𝑧0 =
𝑧𝑡 − 1 − 𝛼𝑡 Ƹ𝜖

𝛼𝑡

𝑙𝑜𝑠𝑠1 = 1 − 𝛼 𝐿2 𝑧0 ෝ𝑧0 + 𝛼𝑀𝑆𝑆𝑆𝐼𝑀 𝑧0 ෝ𝑧0

𝑙𝑜𝑠𝑠2 = 𝐿1 𝜖 Ƹ𝜖 = 𝜖 − Ƹ𝜖

𝑙𝑜𝑠𝑠𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝐿1 𝜖, Ƹ𝜖 + 𝛾 1 − 𝛼 𝐿2 𝝐 ො𝝐 + 𝛼𝑀𝑆𝑆𝑆𝐼𝑀 𝒛𝟎 ෞ𝒛𝟎

Shah, Jay, et al. "Enhancing Amyloid PET Quantification: MRI-Guided Super-Resolution Using Latent Diffusion 
Models." Life 14.12 (2024): 1580.

noise-scale image-scale

Latent diffusion model for resolution recovery (LDM-RR)



Datasets
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Cohort ADNI OASIS-3 Centiloid

Sample count
334 FBPs 

167 baseline-followup
113

(FBP-PIB pairs)
46

(FBP-PIB pairs)

Age (SD) yrs 75.1 (6.9) 68.1 (8.7) 58.4 (21.0)

Education (SD) yrs 16.1 (2.7) 15.8 (2.6) NA

Male (%) 182 (54.5%) 48 (42.5%) 27 (58.7%)

Cognitive 
impairment (%)

236 (70.6%) 5 (4.4%) 24 (52.2%)

APOE4+ (%) 218 (65.3%) 38 (33.6%)
15 (46.9*%) 

[*14/46 unknown]

PET interval (SD) yrs 2.0 (0.06) NA NA

• 3,376 MRI scans from ADNI

• Simulated paired FBP/PiB scans

Training cohort Longitudinal 
cohort

Cross-tracer cohort



Results

Qualitative analysis
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Compared to traditional Iterative 
deconvolution-based correction methoda

aTohka, Jussi, and Anthonin Reilhac. "Deconvolution-based partial volume correction in 
Raclopride-PET and Monte Carlo comparison to MR-based method." Neuroimage (2008)

Compared to traditional LDMs 
with L2 loss minimization on noise scale



Results

On Simulated dataset
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MCSUVR: Mean Cortical Standardized Uptake Value Ratio
measures amyloid plaque accumulation in brain PET
normalized measure of radiotracer uptake. 

1. RC: Recovery Coefficient

• 𝑅𝐶 =
𝑀𝐶𝑆𝑈𝑉𝑅 (𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 𝐷𝑃)

𝑀𝐶𝑆𝑈𝑉𝑅 (𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝐷𝑃)

• Synthetic DP = synthetic high-resolution PET
Simulated DP = simulated digital phantom

• ~1 is ideal

Comparison of mean recovery coefficient (RC) using different 
methods on a held-out test of 338 samples randomly selected from 
the simulated dataset. 



Results

On Longitudinal cohort
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Statistical power in detecting longitudinal changes measured

Annualized rate Raw RL-RR LDM-RR

Mean 0.0278 0.0377 0.0459

SD 0.0664 0.0807 0.0881

p-value 1.0E-07 5.0E-09 1.3E-10

SS 1431 1154 926

1. Annualized Rate

• 𝑟𝑎𝑡𝑒 =
Δ𝑀𝐶𝑆𝑈𝑉𝑅 (𝑓𝑜𝑙𝑙𝑜𝑤𝑢𝑝 − 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)

𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (𝑦𝑟𝑠)

• A higher rate of change = higher statistical power 
to detect longitudinal changes in amyloid deposition

2. SS: Sample Size

• # participants per arm needed to detect a 25% 
reduction in amyloid accumulation rate due to 
treatment with 80% power and a two-tailed type-I error 
of p=0.05 in hypothetical anti-amyloid treatment trials. 

• A smaller SS indicates greater statistical power.



Results

On Cross-tracer cohort
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Comparison of RL and LDM-RR methods in improving the MCSUVR agreement between 
FBP and PIB tracers shown by Pearson correlation and Steiger’s test.

• Combined dataset (OASIS + Centiloid)

• Agreement of PET-derived global amyloid 
burden between FBP and PiB

• Using Pearson correlation & Steiger’s t-test p-
values

Method
Pearson 

Correlation
Steiger’s 
p-value

w/o Correction 0.9163 N/A

RL-RR 0.9308 <0.0001 
(RL-RR vs. without correction)

LDM-RR 0.9411

0.0001
(LDM-RR vs. without correction)

0.0421
(LDM-RR vs. RL-RR)



Findings

1. Super-resolution with latent diffusion models

• Adding image-scale loss penalty can preserve global image structure 

• Noise-scale loss does not guarantee accurate reconstruction

2. Super-resolution for PET Quantification

• Using simulated dataset from domain knowledge
• Voxel-level enhancement using MRI
• Better longitudinal tracking

• Cross-tracer harmonization

3. Deep Learning can address Partial volume effect in PET

• Bettering Early detection and disease monitoring 
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Ablation
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k Method 
(Loss)

MAE Ordinality Systematic Bias

SB-L SB-R

1/2 CE 6.05 0.85 5.31 -5.19

2/3 CE 18.51 0.13 30.67 28.27

1 CE 2.56 0.98 0.11 -2.5

1 MSE 4.66 0.95 2.19 -4.98

2 CE 2.90 0.10 0.93 -3.04

2 MSE 4.57 0.95 4.83 -4.13

We use Manhattan distance in 
regularization:

Exploring other Lk norm distances

Results align with an established study*, 
which suggests Manhattan distance (L1) is 
more suitable than Euclidean in high 
dimensional learning

*Aggarwal, Charu C., et al. "On the surprising behavior of distance 
metrics in high dimensional space." ICDT (2001).



Results

On Discovery (mixed) cohort
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5 clinical groups with increasing order of severity

Healthy 
controls
(N=678)

Healthy 
conv to MCI

(N=179)

Stable 
MCI

(N=432)

MCI 
conv to AD

(N=139)

AD

(N=156)

Definitions

1. HC conv to MCI: normal cognition at baseline, converted to MCI 
during follow-up. 

2. MCI-stable: baseline diagnosis of MCI, unchanged in follow-ups. 
3. MCI conv to AD: MCI diagnosis at baseline, subsequently 

converted to AD.
4. AD: diagnosed with AD at baseline. 



Methods
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aZhang, Shihao, et al. "Improving Deep Regression with Ordinal Entropy." ICLR (2023).
bPan, Hongyu, et al. "Mean-variance loss for deep age estimation from a face." CVPR (2018).

Mean-variance Loss

MSE + Euclidean Norm 
(Ordinal entropy Loss)



Headache detection
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0.38
1.54

3.74

4.65

-1.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

HC Acute PTH Migraine Persistent
PTH

Δage on 
Headache phenotypes

HC = Healthy Controls
PTH = Post Traumatic Headache

*in-house data collected from Mayo Clinic, Arizona

Findings: 

• Δage(P-PTH) < Δage(A-PTH)
suggesting more structural decline related to PTH 
persistence over time 

• Headache frequency associated with structural 
damage

Δage(P-PTH) > Δage(Mig) > Δage(A-PTH) 

• Early detection potential
structural decline acutely following TBI at risk for 
developing persistent PTH



Digital Phantoms
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V=f_gm*gmv + f_wm*wmv + f_csf*csfv + f_bg*bgv + f_gm*abetav

V:  The observed PET signal in a voxel
f_gm: The true radiotracer concentration in gray matter
f_wm: The true radiotracer concentration in white matter
f_csf: The true radiotracer concentration in cerebrospinal fluid
f_bg: The true radiotracer concentration in background (non-brain tissue)
gmv:  The fraction of gray matter in the voxel
wmv: The fraction of white matter in the voxel
csfv:  The fraction of cerebrospinal fluid in the voxel
bgv:  The fraction of background tissue in the voxel
abetav: The fraction of amyloid-beta in the voxel



Comparisons

Methods Pros Cons For Medical Imaging

LCVQ • Captures anisotropic latent 
structure
• High, organic codebook 
utilization (no resets)

• Slight extra compute Best: sharp reconstructions, 
reproducible latents, ↓ MSE / ↑ MS-
SSIM

Soft / Stochastic 
Quantization

• End-to-end differentiable; 
prevents hard collapse
• Minimal extra parameters

• Probabilistic sampling → noisy, 
less deterministic latents
• Over-softens → blurred details; 
can hurt subtle pathology signals

Adequate: for generic images; weak 
for fine neuro-features

Reset / 
Regularization

• Simple add-on to VQ-VAE
• Rarely-used codes are alive 
without softness

• Tuning reset freq & penalty 
weights needed
• Still Euclidean; no locality or 
covariance awareness

Moderate: avoids collapse, but recon 
detail & task scores plateau

FSQ (Finite Scalar 
Quantization)

• No learnable codebook
• Guaranteed non-collapse

• Fixed grid can’t adapt to data 
manifold

Low: coarse, anisotropic errors 
degrade PET/MRI precision
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