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ABSTRACT

Early detection is critical in neurological disorders such as Alzheimer’s disease and

headaches, offering a window for interventions that may delay progression and im-

prove outcomes. However, traditional diagnostic approaches often fail to provide

timely and accurate assessments due to the multifactorial nature of these condi-

tions. Multimodal neuroimaging, particularly magnetic resonance imaging (MRI)

and positron emission tomography (PET), provides complementary structural and

functional information that can enhance diagnostic accuracy if leveraged effectively.

This dissertation presents a three-step deep learning framework that addresses key

challenges in medical imaging analysis. First, a robust brain age prediction model

is introduced that reformulates age estimation as an ordinal classification task. This

mitigates systematic bias in regression-based methods and better captures deviations

from normative aging, critical for identifying early signs of neurological disorders.

Building on this, the second chapter proposes a novel quantization technique to im-

prove latent representation learning in medical imaging. It leverages Mahalanobis-

distance-based soft assignment to multiple codebook vectors, addressing limitations

of traditional vector quantization such as codebook collapse and poor reconstruction

diversity. When integrated into downstream tasks such as brain age prediction, the

proposed quantization method maintains performance in low-resource settings. The

final chapter focuses on enhancing early prognosis through a multimodal generative

approach. Specifically, an MRI-guided latent diffusion model is developed to super-

resolve low-resolution PET scans. By conditioning the diffusion process on high-

resolution anatomical MRI, the model improves spatial resolution and quantification

of pathological biomarkers such as beta-amyloid. Collectively, these contributions

form a clinically motivated, resource-efficient, and multimodal deep learning pipeline

for advancing the early detection of neurological disorders.
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Chapter 1

INTRODUCTION

Neurological disorders pose a massive burden on the global healthcare industry.

Over 3 billion people worldwide were living with a neurological condition in 2021,

making these disorders the leading cause of ill health and disability globally (Orga-

nization et al., 2024). Traditional clinical frameworks often identify pathology only

after irreversible damage has occurred. This delayed detection limits the efficacy of

therapeutic interventions, as it is too late by the time symptoms manifest; ergo, early

detection is key to the ultimate success in combating neurodegenerative disorders and

for effective intervention.

But, early detection of neurological disorders is challenging, especially for Alzheimer’s

disease (AD). Modern deep learning techniques applied to complex neuroimaging data

have helped capture new biomarker signatures for early detection previously unknown

with acceptable accuracy (Jónsson et al., 2019; Bethlehem et al., 2022), primarily

using algorithms that can analyze high-dimensional imaging datasets and uncover

patterns imperceptible to medical experts. Age being the most significant risk fac-

tor, deep learning based brain-age prediction using magnetic resonance imaging

(MRI) data can capture the multivariate pattern of age-related changes in the brain

associated with healthy aging (Cole et al., 2018; Beheshti et al., 2020; Baecker et al.,

2021a). Although these models have achieved mean absolute errors (MAE) as low as

3.39 years (Jónsson et al., 2019), they are known to overestimate younger subjects and

underestimate older ones due to regression-to-the-mean effects, observed across meth-

ods like ridge regression, support vector machines, and deep learning models (Liang

et al., 2019). This bias persists even after post-hoc corrections, as age-adjusted resid-
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uals remain correlated with chronological age (Zhang et al., 2023a). The predicted

outcomes from a machine learning model for continuous outcomes are often systemat-

ically biased (Belitz and Stackelberg, 2021), which is problematic for the applications

of regression models, leading to inaccuracies in any downstream analysis.

Although brain age prediction using MRI has shown strong performance, it re-

mains constrained by the high dimensionality and storage demands of 3D neuroimag-

ing. MRI volumes consist of millions of voxels per scan, making them computation-

ally intensive and inefficient for large-scale deployment or privacy-sensitive scenarios

like federated learning. Transmitting full-resolution images is impractical; instead,

compact, informative representations are needed to reduce bandwidth and enable se-

cure collaboration. Recent advances in deep generative modeling have demonstrated

the power of learning priors over high-dimensional data (Goodfellow et al., 2014;

Ho et al., 2020), with conditional generation increasingly applied to healthcare (Xia

et al., 2021; Tudosiu et al., 2024). Among these, vector quantized variational autoen-

coders (VQ-VAEs) offer a compelling way to encode images into discrete latent tokens

from a learned codebook (Van Den Oord et al., 2017). These discrete representations

support both compression and downstream tasks such as classification, regression,

segmentation and generation. Similar discretization mechanisms have been central to

large language models, where tokenization and codebook design directly affect model

capacity and performance (Sun et al., 2024; Gao et al., 2024). For example, Llama

3’s expanded vocabulary enabled more efficient encoding and improved generative

performance, underscoring the importance of codebook quality1 .

A major limitation of VQ-VAEs, however, is codebook collapse, where only a small

subset of codewords are utilized during training, limiting representational diversity

(Huh et al., 2023). In neuroimaging, this can obscure subtle structural variations

1https://ai.meta.com/blog/meta-llama-3/
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critical for diagnosis. Tudosiu et al. (2024) observed this in FLAIR-based brain

MRI models, which exhibited lower codebook perplexity and less anatomical detail in

reconstructions compared to T1-weighted counterparts. To address this, we propose a

Mahalanobis distance-based quantization approach that replaces the standard

nearest-neighbor assignment with a k-nearest neighbor strategy using a covariance-

aware distance metric. This allows each latent vector to activate multiple statistically

relevant codewords, improving codebook utilization, reducing quantization error, and

preserving fine-grained anatomical structure. Our experiments demonstrate that this

approach retains actual brain age prediction accuracy while offering advantages for

privacy-preserving and resource-efficient learning, making it suitable for clinical and

federated settings.

While structural changes captured by MRI are important, they may not be suffi-

cient for detecting preclinical AD pathology. Molecular biomarkers such as amyloid-

β—detectable via positron emission tomography (PET)—are critical for identifying

the biological onset of AD years before symptoms emerge (Chapleau et al., 2022).

However, PET imaging faces a resolution-accuracy trade-off: clinically feasible low-

resolution PET scans obscure subtle amyloid accumulations, while higher resolution

comes at the cost of increased scan time and radiation. Although deep learning-based

PET super-resolution approaches have been proposed (Song et al., 2020b; Yoshimura

et al., 2022), they often fail to accurately resolve amyloid-specific distributions and

are prone to smoothing artifacts. To address this, the final part of this thesis explores

a multimodal diffusion-based framework for PET super-resolution, where high-

resolution anatomical guidance from MRI is used to enhance low-resolution PET. By

leveraging the complementary strengths of MRI (structural detail) and PET (molecu-

lar specificity), this approach enables more accurate reconstruction of amyloid distri-

butions and enhances quantification reliability. We build on recent advances in latent
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diffusion models and demonstrate that incorporating MRI guidance during both en-

coding and generation yields super-resolved PET images that are not only sharper

but also more clinically informative, thus supporting more precise early detection of

AD.

Motivated by these aforementioned limitations of existing deep learning techniques

applied to real-world medical imaging data, this thesis introduces three innovative

deep learning methodologies that address the following questions, broadly applicable

to deep learning research and not solely limited to computational medical imaging

analysis:

1. How to address systematic bias of regression-to-mean (RTM) in image-

based regression models when using mean squared error (MSE) loss?

2. How to address the well-known problem of codebook collapse in vector

quantization which is critical for capturing subtle features or anatomi-

cal distortions directly impacting diagnostic decisions in medical image

reconstruction?

3. How can diffusion models better leverage image-guidance for medical im-

age super-resolution while preserving the accuracy of anatomical varia-

tions?

1.1 Overview of Contributions

Chapter 3 presents a novel framework for robust brain age prediction by refor-

mulating the task as an ordinal classification problem, augmented by a novel distance

regularization technique. In this approach, continuous brain age values are discretized

into ordered categories, thereby capitalizing on the inherent progression of aging. We
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enforce the model to recognize that misclassifications between adjacent age groups are

less severe than those spanning distant categories. Central to this framework is the

integration of distance regularization via ORdinal Distance Encoded Regularization

(ORDER) loss, which imposes a penalty that is proportional to the ordinal distance

between the predicted and actual age groups. This ensures that the network learns a

smooth transition between adjacent age categories, effectively capturing subtle, age-

related structural changes in the brain. The deep convolutional architecture employed

here extracts high-level features from T1-weighted brain MRI data, thereby enhanc-

ing the sensitivity to anatomical nuances indicative of aging. During the training

phase, the model optimizes a composite loss function that combines the traditional

cross-entropy loss for ordinal classification with the bespoke distance regularization

term (Shah et al., 2024c). This dual-loss formulation not only guides the network to

correctly assign images to their respective age bins but also minimizes the error mag-

nitude when predictions deviate from the true age, resulting in nuanced and robust

brain age estimation. At inference, similar to Pan et al. (2018), the probability distri-

bution across the ordered categories is leveraged to derive a continuous age estimate,

blending the results of an ordinal classification model with the precision of regression.

Extensive experiments on both public and institutional datasets demonstrate that

this framework significantly outperforms standard regression and conventional classi-

fication approaches. Notably, the incorporation of distance regularization contributes

to improved stability and reliability, particularly in scenarios with imbalanced age

distributions or limited sample sizes. The empirical results underscore the poten-

tial of this approach for clinical applications, where accurate brain age prediction can

serve as an early indicator of neurodegenerative conditions (Shah et al., 2022b, 2023b,

2024c) and other potentially age-associated brain disorders (Shah et al., 2024b).

Chapter 4 presents a novel framework for quantization-aware compression of
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high-dimensional brain MRI using a Mahalanobis distance-based vector quantization

strategy. This chapter introduces Locality-Constrained Vector Quantization (LCVQ),

a replacement for the conventional quantization step in VQ-VAE, which incorporates

statistical structure into the codeword selection process. We took inspiration from

findings of much earlier quantization research (Yang et al., 2009; Wang et al., 2010),

where authors showed that by relaxing the quantization step to aggregate more than

one codebook vector via locality or sparsity constraints can lead to better feature

representation learning. Instead of relying on a single nearest neighbor in Euclidean

space, our method computes Mahalanobis distances, taking into account the global

covariance of the codebook, and selects the top-K most relevant vectors for each

latent. The selected neighbors are then averaged to yield a smooth, locality-preserving

quantized representation. This formulation not only mitigates codebook collapse by

promoting broader codebook usage but also preserves the geometric continuity of the

latent space.

Integrated into a 3D VQ-VAE pipeline, the proposed LCVQ framework retains

anatomical reconstruction fidelity and downstream predictive performance in brain

age estimation, all while achieving compression rates conducive to real-world deploy-

ment. Furthermore, we argue that the compact-discrete latent codes produced by

this approach offer practical advantages for federated and privacy-preserving learn-

ing frameworks, where data efficiency is paramount. Experiments on large-scale

neuroimaging datasets demonstrate that LCVQ outperforms state-of-the-art VQ-

based baselines—including morphology-preserving (Tudosiu et al., 2024) and affine-

regularized variants (Huh et al., 2023) in terms of codebook perplexity, percep-

tual similarity, and predictive accuracy. To our knowledge, this is the first use of

Mahalanobis-informed quantization in medical image compression, highlighting its

potential to enhance both interpretability and utility in clinical AI pipelines.
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Chapter 5 introduces an innovative framework that leverages multimodal imag-

ing and synthetic data to render high-resolution PET, given that the ground-truth

for those images doesn’t exist in reality. More specifically, it is aimed at enhancing

the quantification of amyloid PET scans through an MRI-guided super-resolution ap-

proach by leveraging latent diffusion models (Shah et al., 2024a). It harnesses the

complementary strengths of high-resolution MRI and the generative prowess of latent

diffusion models to reconstruct PET images with higher resolution. By conditioning

the latent diffusion process on detailed anatomical information derived from MRI, the

framework is designed to generate super-resolved PET images that not only exhibit

enhanced spatial resolution but also retain critical biochemical information necessary

for accurate amyloid quantification. At the core of this approach lies a dual-path

architecture: one branch processes the lower-resolution PET input, while the other

extracts rich anatomical features from corresponding MRI scans. The latent diffusion

model then iteratively refines the PET image by integrating these features, effectively

learning a mapping that respects both the inherent distribution of PET signal inten-

sities and the structural guidance provided by MRI. This fusion of modalities enables

a more faithful reconstruction of fine-grained details, thereby reducing partial volume

effects and improving the reliability of subsequent amyloid burden assessments.

Model training was done using a combined loss objective that balances reconstruc-

tion fidelity with anatomical consistency, ensuring that the generated high-resolution

PET images are both quantitatively accurate and visually coherent. Empirical evalu-

ations on different datasets demonstrate that this MRI-guided super-resolution strat-

egy significantly outperforms conventional interpolation methods (Tohka and Reilhac,

2008) and deep learning-based super-resolution techniques (Ho et al., 2020; Pinaya

et al., 2022a), providing improvements in both visual quality and quantitative met-

rics. We believe such enhancements are critical for the early diagnosis and tracking
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the progression of neurodegenerative diseases like Alzheimer’s, where precise amyloid

quantification plays a pivotal role. Moreover, the modularity of this framework al-

lows for future integration with other imaging modalities and clinical parameters, a

potential way for broader applications in multimodal neuroimaging diagnostics and

data synthesis.

In summary, this dissertation contributes to the field of deep learning-based early

detection of brain disorders using diverse medical imaging data. The proposed OR-

DER loss in an ordinal classification can better structural proxies of aging from MRI

data, aiding early detection, whereas the LDM-RR framework allows better quantifi-

cation of amyloid deposits in the brain using PET data. At the same time, LCVQ ad-

dresses the common challenge of codebook collapse in VQ-based image reconstruction

models. Through comprehensive evaluations on real-world datasets, we demonstrate

these methods’ applicability and effectiveness.
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Chapter 2

BACKGROUND

Understanding the progression of Alzheimer’s disease requires synthesizing in-

sights from a wide range of clinical, behavioral, and biological signals. While imaging-

based biomarkers like MRI and PET have dominated much of the machine learning

(ML) research in AD, there is growing interest in leveraging non-imaging features,

including neuropsychiatric symptoms (NPS) and fluid biomarkers for early risk pre-

diction. These modalities not only complement structural and functional imaging

but may also capture upstream changes that precede overt cognitive decline. This

chapter reviews the landscape of ML applications in AD research, with a focus on

integrating underutilized non-imaging biomarkers into predictive frameworks.

Deep learning breakthroughs in neuroimaging now dominate AD research. Yet

front-line clinical practice still leans on low-cost, non-invasive measures: neuropsychiatric-

symptom inventories, activities-of-daily-living scales, routine blood tests that can be

collected at scale and frequently register pathophysiologic change earlier than MRI or

amyloid-PET (Geda et al., 2014; Gill et al., 2020). Meta-analytic evidence shows that

ML models built on such inexpensive signals already boost diagnostic sensitivity and

specificity (Chang et al., 2021). Beginning the review with these traditional ML ap-

proaches, therefore grounds the thesis in real-world clinical workflows and highlights

how behavioural or fluid markers complement the computationally intensive imaging

pipelines developed later. Recent multimodal studies that weave neuropsychiatric

data, fluid biomarkers, and neuroimaging into a single predictive framework (Qiu

et al., 2020) illustrate this synergy and directly motivate the deep-learning methods

introduced in subsequent chapters.
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2.1 Machine Learning and non-imaging AD Biomarkers

Reviews and original studies have examined ML in the context of AD biomarkers

derived from neuroimaging, cerebrospinal fluid (CSF), or plasma. For example, a

meta-analysis reported that biomarker-based ML techniques might increase the sen-

sitivity and specificity of the AD diagnosis (Chang et al., 2021), and NPS are known

to be associated with AD biomarkers in brain aging (Gill et al., 2020). However,

to date, less is known as to whether ML approaches are also useful in investigating

the associations between NPS and AD biomarkers in brain aging. Since this the-

sis aims to develop AI-driven methods for early detection of neurological disorders,

including AD, we also did a literature review with an emphasis on the potential of

incorporating NPS, alongside traditional imaging biomarkers, to achieve this goal

(Shah et al., 2023c). Tab.2.1 provides a comprehensive overview of all reviewed ML

studies (summarized in 2023) categorized by their focus on NPS, AD biomarkers

(MRI and PET), and cognitive outcomes. The table highlights the diversity of data

modalities and analytical methods in AD research, with a particular emphasis on how

multimodal integration and advanced ML techniques (e.g., deep learning, ensemble

models) enhance diagnostic accuracy, prognostic value, and our understanding of

the relationships between NPS, other AD biomarkers, and cognition. This literature

review was aimed at facilitating comparison and identifying gaps, particularly the

underrepresentation of studies jointly analyzing NPS and AD biomarkers.

Further, the brain age prediction framework developed in the thesis (Chapter 3)

could potentially benefit from the inclusion of NPS data. Since accelerated brain

aging, as captured by brain age prediction models, is also associated with cogni-

tive decline and AD risk, incorporating NPS as additional features in the brain age

prediction framework might enhance its accuracy and provide a more holistic assess-

10



ment of an individual’s risk profile. For instance, individuals exhibiting a brain age

significantly older than their chronological age and reporting specific NPS could be

identified as being at a particularly high risk of developing AD.

Table 2.1: Summary of Literature on Machine Learning Methods for Brain Aging

Analysis, Spanning Neuropsychiatric Symptoms (NPS), MRI and PET Biomarkers,

and Multi-modal Combinations Thereof.

Study Data ML

Model

Key findings

Gill et al.
(2020)

NPS, AD
biomarkers

Logistic
Model
Tree

Predicted future cognitive status using
baseline clinical, neuropsychiatric, and
MRI data. MBI scores showed higher
diagnostic value than clinical or
volumetric features. ML model identified
2–7 optimal classification features.

Mallo
et al.
(2020)

NPS Random
Forest

Predicted MCI-to-dementia conversion
using socio-demographics, health status,
and NPS proxies with 67% F1-score,
88% accuracy. Random forest
outperformed 8 other ML models. Top
predictors: NPI-Q severity, stress, and
GDS-15 scores.

Mar et al.
(2020)

NPS Random
Forest

ML models detected psychotic and
depressive symptoms in dementia. The
psychotic cluster model had higher
discriminatory power.

Palermo
et al.
(2021)

NPS LSTM Sensor-based data used to detect
agitation in dementia. LSTM models
captured temporal dependencies and
predicted agitation with 75% accuracy.

Kang et al.
(2019)

NPS 3-layer
ANN,
Logistic
Regression

Neural net outperformed logistic
regression in 2-class and 3-class tasks.
Achieved 97% accuracy predicting NC,
MCI, ADD using neuropsychological
data.

Continued on next page
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Table 2.1 – Continued from previous page

Study Data ML

Model

Key findings

Klöppel
et al.
(2018)

MRI SVM SVM model distinguished depression vs
early AD in challenging cases. Not useful
for diagnosis, but the authors recommend
it for individual-level analysis.

Salvatore
et al.
(2015)

MRI PCA,
FDR,
SVM

ML model found similar atrophy in AD
and MCI converters, suggesting early
MRI-detectable structural biomarkers.

Sørensen
et al.
(2018)

ADNI Ensemble
SVM

Ensemble SVMs were more robust and
accurate than single classifiers, useful for
multi-class AD classification.

Cao et al.
(2017a)

MRI Multiple
kernel
learning,
k-NN,
manifold
learning

Manifold learning improved oversampling
and dimensionality reduction. k-NN
outperformed SVM. Kernel learning
better represents nonlinear structures.

Pang et al.
(2019)

MRI Semi-
supervised
Deep Au-
toencoder

Deep learning enabled effective
hippocampus segmentation without
registration—useful for AD diagnosis.

Chen et al.
(2021)

MRI CNN CNNs outperformed SVM/FCNN in
segmentation and speed. AD indicators
like reduced gray matter and cortex
thickness were better captured.

Qiao et al.
(2021)

MRI CNN Contrastive loss on CNN grouped similar
subjects and improved MMSE ranking.
Helped distinguish AD, NC, and MCI.
Used CNN with MRI input.

Ambastha
et al.
(2017)

MRI Ensemble
CNNs,
AdaBoost

Ensemble CNN with dual-region MRI
inputs improved AD prediction.
Captured degenerative patterns tied to
behavior.

Continued on next page

12



Table 2.1 – Continued from previous page

Study Data ML

Model

Key findings

Bhagwat
et al.
(2019)

MRI Anatomically
partitioned
ANN

ANN predicted cognitive scores at
baseline and 1 year using structural MRI
data, including hippocampal
segmentations and cortical parcellations.

Qiao et al.
(2022)

MRI 3D CNN Converted MMSE regression into
multi-class classification using ordinal
bins. Better predicted MMSE over time,
highlighting subtle cognitive changes.

Cui et al.
(2019)

MRI CNN,
RNN

Combined CNNs (for spatial) and RNNs
(for longitudinal) features. Outperformed
baseline models and handled missing
data. Focused on longitudinal AD
analysis.

Son et al.
(2020)

PET 2D & 3D
CNNs

Deep models matched or outperformed
expert PET readers, especially for
ambiguous cases. 2D CNNs performed
better than 3D CNNs.

Choi et al.
(2020)

PET 3D CNN 3D CNN captured cognitive patterns
across AD, MCI, and PD. Transfer
learning aided performance on small
datasets.

Whittington
et al.
(2021)

PET Linear
regression

Voxel-wise regression enabled a new tau
quantification method accounting for
complex deposition patterns beyond
amyloid.

Qiu et al.
(2020)

multiple
biomarkers

FCN +
MLP

Adding age, gender, and MMSE
improved performance over MRI alone
(acc: 0.968 vs 0.834).

Donnelly-
Kehoe
et al.
(2018)

multiple
biomarkers

Decision
trees (RF,
SVM,
AdaBoost)

Random forest performed best.
Morphological features alone are
insufficient for good accuracy—MMSE
needed for cognitive profiling.

Continued on next page
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Table 2.1 – Continued from previous page

Study Data ML

Model

Key findings

Liu et al.
(2020)

multiple
biomarkers

Group
Guided
Fused
Laplacian
Sparse
Group
Lasso

Multimodal, multitask framework using
graph Laplacian showed significance in
longitudinal modeling.

Bhagwat
et al.
(2018)

multiple
biomarkers

Siamese
Neural
Network

Follow-up info improved multimodal
performance. The two-timepoint input
offered the best performance. Helped
identify stable/declining patterns.

Beltran
et al.
(2020)

multiple
biomarkers

Random
forests,
gradient
boosting

Cost-effective screening using ML models
vs expensive biomarkers. Focused on
trajectories without hard thresholds.

Delmotte
et al.
(2021)

multiple
biomarkers

Linear
mixed
effects
model

Explored MMSE trajectories across ATN
classes. A–/T–/N+ class showed distinct
MMSE decline over 3 years.

Frölich
et al.
(2017)

multiple
biomarkers

SVM SVM with linear kernel and 9 predictors.
Hippocampal volume and tau had the
best predictive power. Multi-modality
helped at fixed sensitivity.

Abbreviations: AD, Alzheimer’s disease; ADD, Alzheimer’s disease dementia; ADNI,

Alzheimer’s Disease Neuroimaging Initiative; ANN, artificial neural network; ATN,

amyloid/tau/neurodegeneration; CNN, convolutional neural network; CU, cognitively

unimpaired; EMCI, early MCI; FCN, fully convolutional network; FDR, Fisher Dis-

criminant Ratio; GDS-15, Geriatric Depression Scale-15 items; HC, healthy controls;

k-NN, k-nearest neighbor; LMCI, late MCI; LSTM, Long Short-Term Memory net-

work; MBI, mild behavioral impairment; MCI, mild cognitive impairment; MMSE,

Mini-Mental Status Exam; MRI, magnetic resonance imaging; NC, normal cognition;
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NPI-Q, Neuropsychiatric Inventory-Questionnaire; NPS, neuropsychiatric symptoms;

PET, positron emission tomography; PCA, principal component analysis; RNN, re-

current neural network; SVM, support vector machine.

We found that while a substantial number of ML studies have focused on utilizing

traditional AD biomarkers, such as neuroimaging data (Franke et al., 2010; Franke

and Gaser, 2012), cognitive scores, and various omics data (Trivedi et al., 2023), to

construct predictive diagnostic models for AD, there is a noticeably limited number of

studies that have specifically investigated NPS, either in isolation or in combination

with these established biomarkers. This disparity underscores a potential gap in the

current research landscape, suggesting that the role of NPS in ML-driven AD research

might be underexplored (Shah et al., 2023c). One key takeaway from our analysis

is the potential predictive power of NPS, especially when considered in conjunction

with established AD biomarkers, for identifying individuals who are at an elevated

risk of developing mild cognitive impairment (MCI) or dementia (Gill et al., 2020;

Shah et al., 2023c). Since the evidence suggests that NPS can manifest even in

the early stages of the disease and may even precede cognitive decline (Geda et al.,

2014). The combination of these clinical symptoms with biological markers offers a

more comprehensive picture of an individual’s risk profile.

We further tested this hypothesis and found that, indeed, incorporating NPS

into machine learning models, with a simple step-wise feature addition approach as

shown in Fig.2.1, generally led to improved performance in predicting cognitive decline

(Shah et al., 2025). Specifically, the ML models demonstrated better performance

when NPS were included alongside neuroimaging biomarkers for predicting decline

in global cognition, as well as in the cognitive domains of language and visuospatial

skills, suggesting that NPS provide valuable additional insights when combined with

structural or functional brain imaging data in the context of predicting cognitive
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Figure 2.1: Building Three Different Sets of ML Models Using a Stepwise Feature

Addition Approach. (1) Including Demographic Features, Then Adding Plasma-

derived Biomarkers, Then Adding NPS; (2) Including Demographic Features, Then

Adding Neuroimaging-derived Biomarkers, Then Adding NPS; And (3) Including

Demographic Features, Then Adding CSF-derived Biomarkers, Then Adding NPS.

decline. Furthermore, we found that the inclusion of NPS also improved the prediction

of decline in visuospatial skills when using plasma-derived biomarkers, and the models

showed enhanced performance in predicting decline in attention/executive function,

language, and memory when NPS were added to models that included CSF-derived

AD biomarkers. We do note that the effect sizes of this improvement were generally

small, indicating that while NPS contribute valuable information, they might not be

the sole determinant of cognitive decline, and their impact might be subtle.

Extending this multimodal approach to modifiable lifestyle factors, our recent

work demonstrates how machine learning can identify intervention-specific predic-

tors of cognitive trajectory in dementia patients undergoing physical activity (PA)

programs (Barisch-Fritz et al., 2025). SVM models achieved moderate classification

accuracy (40.6-75.6%) for cognitive decline using PA adherence metrics and func-

tional performance measures like activities of daily living (ADL). ADL performance
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emerged as a stronger predictor than traditional PA metrics, suggesting functional ca-

pacity captures neurodegeneration aspects complementary to biological markers (see

Appendix D). Whereas, adherence patterns in the intervention group correlated with

cognitive outcomes, implying ML could detect early signs of intervention resistance.

To better understand individual feature contributions to model predictions, we used

SHapley Additive exPlanations (SHAP) plots. These plots (Fig.D.1 and Fig.D.2)

revealed that ADL-related variables consistently ranked among the most influential

features in both intervention and control groups, underscoring their predictive utility.

Biological markers (e.g., brain age delta), symptom profiles (NPS), and modifiable

factors (PA/adherence) could create composite risk signatures, and future implemen-

tations of our brain age prediction system could incorporate such lifestyle/functional

metrics.

In addition to the use of ML for traditional imaging and fluid biomarkers, recent

advances have demonstrated the power of interpretable deep learning frameworks in

elucidating the molecular changes underlying AD using bulk RNA-sequencing data.

We developed and applied an interpretable deep learning approach to postmortem

brain transcriptomic data from multiple brain regions in large clinical cohorts (Trivedi

et al., 2023). This framework not only achieved high accuracy in classifying AD

versus control samples across internal and external datasets but also enabled the

identification of key gene modules implicated in disease pathogenesis. Notably, our

analyses revealed common gene signatures associated with microglial activation across

brain regions, as well as sex-specific transcriptional modules in neurons, providing new

insights into the molecular basis of sex differences in AD vulnerability and progression.

These findings underscore the potential of explainable AI approaches to bridge the

gap between high-dimensional molecular data and clinically meaningful biomarkers

and to advance our understanding of the complex, multi-factorial etiology of AD.
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Overall, these studies show how machine learning can bring together different

types of data, like brain scans, fluid biomarkers, symptom profiles, lifestyle factors,

and even gene expression, to better understand and predict AD. Each type of data

offers a different piece of information, and combining them leads to more accurate

models and deeper biological insights.

2.2 Early detection in Alzheimer’s Disease

AD is a devastating neurodegenerative disorder that is currently affecting over

6.9 million people in the United States1 and 55 million people worldwide, and its

associated economic burden is anticipated to increase exponentially in the coming

decades. AD is characterized by an extended preclinical phase that can span decades

before the onset of clinical symptoms and is neuropathologically defined by the pres-

ence of neuritic amyloid plaques and tau neurofibrillary tangles (Long and Holtzman,

2019). While genetic predispositions, such as carrying the APOE4 allele, contribute

to disease risk, aging remains the most significant risk factor (Niccoli and Partridge,

2012). Consequently, gaining deeper insights into the aging process and its interac-

tion with AD-specific pathophysiology is essential for advancing effective treatment

and prevention strategies.

However, biological aging is a highly complex process that lacks a universally

accepted definition (Niccoli and Partridge, 2012). As a result, chronological age is

frequently used as an imperfect proxy, as it reflects elapsed time rather than the

underlying biological mechanisms (Horvath and Raj, 2018). In recent years, the

availability of large-scale datasets and advances in deep learning (LeCun et al., 2015;

Cole et al., 2015) have led to the development of various biological “clocks” designed

to characterize aging at different levels using macroscopic structural imaging data

12024 Alzheimer’s disease facts and figures; https://doi.org/10.1002/alz.13809
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(Cole et al., 2017) notably with a mean absolute error of approximately 4 years.

Continued advancements in computational methods are expected to further enhance

model accuracy (Jónsson et al., 2019; Shah et al., 2024c). However, existing biological

clocks face limitations, including biases arising from constrained training datasets, the

misalignment of linear modeling approaches with the inherently nonlinear nature of

biological aging, survival biases, and regression modeling. These factors frequently

result in systematic errors, leading to age overestimation in younger individuals and

underestimation in older populations (Liang et al., 2019).

Recently, multi-modal deep learning approaches integrating MRI and PET imag-

ing have been proposed for early AD detection, as these modalities provide comple-

mentary insights into structural and molecular pathologies (Song et al., 2021; Venu-

gopalan et al., 2021; Castellano et al., 2024). MRI can capture detailed anatomical

changes, such as hippocampal atrophy and cortical thinning, which correlate with neu-

rodegeneration. Meanwhile, amyloid PET directly visualizes β-amyloid plaques—a

neuropathological hallmark of AD through radiotracers like 18F-Florbetaben, offering

functional evidence of disease progression even before structural changes manifest.

More broadly, deep learning has become a pivotal tool in leveraging T1-weighted

MRI data for the early diagnosis of AD. By automating the detection of structural

and functional biomarkers, such as brain atrophy and amyloid burden, deep learn-

ing models provide a non-invasive, cost-effective alternative to traditional diagnostic

methods like PET scans or cerebrospinal fluid (CSF) analysis.

2.2.1 Deep Learning and MRI data

Deep learning-based techniques have attracted considerable research attention in

the field of medical image analysis (Ker et al., 2017). Their ability to learn directly

from raw data makes them an ideal framework for exploring how such methods can
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enhance clinical workflows. More fundamentally, it has transformed structural MRI

analysis through its capacity to extract latent neuroanatomical patterns directly from

raw T1-weighted images, with brain age prediction emerging as a pivotal biomarker

for neurodegenerative disease detection (Cole et al., 2018; Jónsson et al., 2019). By

training convolutional neural networks (CNNs) on large-scale datasets of healthy in-

dividuals, researchers can quantify the discrepancy between predicted brain age and

chronological age (brain age gap), which correlates with AD progression and cognitive

decline (Cole et al., 2017; Jónsson et al., 2019; Dartora et al., 2024). Early approaches

achieved mean absolute errors (MAE) of 3.39 years using residual CNNs with trans-

fer learning across multi-site datasets (Jónsson et al., 2019), while recent innovations

have reduced MAE to 2.67 years through streamlined preprocessing pipelines requir-

ing only rigid registration to MNI space (Dartora et al., 2024). This technical advance

enables broader clinical adoption by minimizing computational barriers traditionally

associated with feature extraction and nonlinear registration.

Current brain age estimation methodologies face three interrelated limitations

that hinder clinical translation. First, precision constraints persist despite technical

advancements; state-of-the-art models achieve mean absolute errors (MAEs) of 4.73-

8.38 years in healthy adults (More et al., 2023; Yu et al., 2024), exceeding the subtle

annual brain age acceleration (0.5-1 year) characteristic of preclinical neurodegenera-

tion (Moguilner et al., 2024). This resolution gap fundamentally limits early detection

capabilities, as MAEs often surpass the biological signal of interest (Yu et al., 2024).

Second, standardization challenges permeate the field. Variability in preprocessing

pipelines (e.g., registration methods, intensity normalization) and feature selection

(voxel-wise vs. region-of-interest approaches) creates divergent outcomes. Whereas,

scanner-related variance introduces additional bias—models trained on 3T MRI data

exhibit systematic overestimations (around 5.6 years) when applied to 1.5T scans
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from equivalent populations (Moguilner et al., 2024). Even advanced harmonization

techniques only reduce cross-protocol MAE variance from 5.63 to 2.25 years (Yu et al.,

2024).

Third, systematic bias in brain age prediction models, characterized by overesti-

mation of younger individuals’ brain age and underestimation in older cohorts, arises

fundamentally from regression to the mean (RTM)—a statistical phenomenon where

extreme initial measurements gravitate toward the population average in subsequent

assessments (Liang et al., 2019; Lee and Chen, 2025). This bias persists across di-

verse methodologies (ridge regression, support vector machines, Gaussian processes,

and deep neural networks) and datasets, indicating it is inherent to the statistical

properties of age prediction rather than specific algorithmic flaws. RTM-induced bias

creates artificially inflated brain age gaps (BAGs) in youth and diminished gaps in

older adults, complicating the detection of subtle, clinically relevant deviations (e.g.,

0.5–1 year acceleration in preclinical AD). While post-hoc corrections (e.g., general

linear models) can mitigate this bias (Liang et al., 2019), residual errors (mean ab-

solute errors ≥ 2.38–7.14 years) remain orders of magnitude larger than pathological

aging rates, limiting sensitivity for early disease biomarkers.

2.2.2 Deep Learning and PET imaging data

PET is a molecular imaging technique that uses radioactive tracers to visualize

and measure biochemical changes in the brain. Once injected, these radiotracers bind

to specific targets, such as amyloid or tau proteins, and emit positrons as they decay.

When a positron collides with an electron, they annihilate, producing two gamma

photons that travel in opposite directions. These photons are detected by the PET

scanner, allowing the reconstruction of high-resolution images that reflect underlying

molecular activity.
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Deep learning models have recently been applied to these PET scans to detect sub-

tle pathological changes at the earliest stages of AD, enabling improved prediction,

monitoring well before the onset of clinical symptoms, improving quantitative accu-

racy, and addressing technical limitations inherent to multimodal data. Convolutional

neural networks (CNNs) and other architectures have demonstrated exceptional per-

formance in classifying AD stages, with studies achieving AUC values up to 0.98 for

distinguishing AD from normal cognition using FDG-PET data (Duan et al., 2023).

Multimodal PET/MRI integration has the potential to further enhance diagnostic

precision by combining metabolic, molecular, and anatomical data, while overcom-

ing challenges like tracer variability through innovative deep learning solutions for

cross-tracer harmonization.

We developed a deep residual inception encoder-decoder network (RIED-Net)

that addressed a critical barrier in amyloid PET quantification: variability in the

amyloid burden measurements across tracers like Pittsburgh Compound-B and flor-

betapir (Shah et al., 2022a; Gao et al., 2025). By training the model on 92 sub-

jects with 10-fold cross-validation, the model harmonized global amyloid burden and

voxel-wise measurements, achieving significantly stronger between-tracer correlations

(p < 0.001). This encoder-decoder architecture learned spatial mappings to align

tracer-specific uptake patterns while preserving disease-relevant features, enabling

more reliable multisite and longitudinal studies (see Appendix C). The harmoniza-

tion framework’s success (validated on an external cohort of 46 subjects) underscores

deep learning’s capacity to standardize biomarker measurements, which is a prereq-

uisite for accurate disease monitoring.

Moreover, technical limitations hinder optimal integration. PET’s low spatial res-

olution (typically 4-6mm) causes partial volume effects (PVE) (Tohka and Reilhac,

2008), blurring the amyloid signal across tissue boundaries, and complicating quan-
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tification. MRI’s superior resolution (≤1mm) helps mitigate this through anatomical

guidance, but conventional fusion methods struggle with misalignment artifacts and

information loss during registration (Song et al., 2021; Shah et al., 2024a). These chal-

lenges are particularly acute in early-stage AD, where subtle amyloid deposition and

minimal structural changes demand millimeter-level precision for accurate diagnosis.

2.3 Early detection in Headache

There is currently no recognized way of accurately predicting who will recover

from post-traumatic headache (PTH) during the acute phase following concussion

and who will go on to develop persistent PTH (PPTH), a condition that is difficult

to treat effectively. It is of particular interest to identify brain imaging and clinical

feature biomarkers using machine learning algorithms that distinguish individuals

at high risk for developing PPTH from patients who are likely to acutely recover

from PTH prior to three months. Data-driven biomarker discovery can determine

important clinical factors and neuropathological mechanisms underlying PPTH and

interrogate the contribution of clinical, demographic data, and speech signatures on

predicting PTH persistence.

Drawing upon the success of deep learning in the computer vision field, neu-

roimaging research has also benefited from DL for the study of neurodegenerative

diseases, potentially contributing to earlier diagnosis, disease staging, prognosis, and

therapeutic development (Myszczynska et al., 2020; Ramzan et al., 2020). However,

the development of brain imaging–based DL models for migraine and other headache

types has been limited. Our efforts have been among the few research studies explor-

ing DL-based headache detection using structural MRI scans. This mainly includes

a supervised classification method for automated biomarker extraction for different

headache subtypes (Rahman Siddiquee et al., 2023) and unsupervised anomaly de-
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tection methods (Rahman Siddiquee et al., 2022; Siddiquee et al., 2024). The former

leveraged a supervised 3D ResNet architecture to classify headache subtypes and au-

tomatically localize predictive brain regions, identifying distinct structural patterns

for migraine, acute, and persistent post-traumatic headache. In contrast, the latter

methods, HealthyGAN and Brainomaly, introduced unsupervised anomaly detection

frameworks using generative image translation to learn deviations from healthy brain

structure without requiring disease labels. HealthyGAN employs a one-directional

image-to-image translation approach that learns to map unannotated mixed datasets

to healthy images, relaxing the cycle-consistency constraint common in traditional

GANs. This method generates difference maps by subtracting the translated healthy

image from the input, highlighting potential anomalies. Building upon this, Brain-

omaly introduces an additive map–based translation mechanism tailored for neu-

roimaging, where the model predicts voxel-wise changes needed to transform an input

MRI into a healthy counterpart. This approach not only enhances the detection of

subtle structural abnormalities but also incorporates a pseudo-AUC metric for model

selection in the absence of annotated data. Notably, Brainomaly achieved high AUCs

in detecting headache-related abnormalities, demonstrating clinical potential for early

detection even in unlabeled MRI datasets. Complementing these efforts, we also ex-

plored the prediction of headache recovery using multimodal machine learning algo-

rithms to build predictive models that predict the likelihood of symptom resolution

in the APTH cohort (Joshi et al., 2024). The multimodal SVM model combining T2*

MRI features and speech biomarkers achieved an AUC of 0.87 for predicting headache

improvement at three months in patients with acute post-traumatic headache, outper-

forming single-modality models (AUC=0.66 for T2* alone and AUC=0.75 for speech

alone). This underscores how integrating diverse data modalities can guide personal-

ized prognostication for headache recovery. Furthermore, in our recent work (Rafsani
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et al., 2025), we leveraged a language-image foundation model pre-trained on 15

million biomedical image-text pairs to fine-tune on a relatively small MRI dataset

comprising various headache subtypes. This approach achieved high classification

accuracies (up to 91.67%) and enabled the identification of discriminative brain re-

gions, underscoring the potential of large-scale pretraining for enhancing headache

classification and biomarker discovery from limited neuroimaging data.

However, much similar to AD, the relationship between neurodegeneration and

headaches is complex and multifaceted. A meta-analysis found that headache disor-

ders are associated with a 1.35-fold increased risk of all-cause dementia, a 1.49-fold

increased risk of AD, and a 1.72-fold increased risk of vascular dementia (Qu et al.,

2022). Similar to that, another study reported that patients with migraine developed

AD with a 1.32 hazard ratio compared to those without migraine history (Kim et al.,

2023). Chong et al. (2014) found unique age-related patterns of cortical thinning

and thickening in migraine patients, suggesting an interaction between migraine and

the aging process. Whereas, a recent study found no significant structural brain dif-

ferences between elderly migraine sufferers and non-sufferers, challenging the notion

of long-term structural changes due to migraine (Acarsoy et al., 2024). These con-

trasting findings underscore the complexity of headaches’ effects on the brain and

necessitate the need to further investigate the role of headaches in developing accel-

erated aging patterns and better predict headache persistence (Shah et al., 2024b).

Advancements in imaging techniques, particularly MRI, have played a pivotal role

in understanding the human brain, allowing direct quantification of such alterations

in vivo and at a large scale. This has contributed significantly to headache research

and the search for data-driven imaging biomarkers (Rahman Siddiquee et al., 2023).

However, identifying and understanding the alterations in brain structure and func-

tion linked to the onset, progression, and episodic occurrence of headache disorders
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remains an active area of research interest (Schwedt et al., 2024). We hypothesize that

MR imaging completed between 7-28 days since the onset of PTH will show greater

magnitude of alterations and greater distribution of changes in brain structure and

function in patients that go on to have persistence of PTH compared to concussed

patients that recover from PTH during the acute phase and compared to healthy

controls. In Sec.3.5.4 we demonstrate that the bio-signatures of brain age captured

from MRI in patients with acute post-traumatic headache (aPTH) attributed to mild

traumatic brain injury (mTBI) may serve as a surrogate neuroimaging biomarker for

predicting PTH persistence.
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Chapter 3

ROBUST BRAIN AGE PREDICTION

3.1 Motivation

Normal aging causes structural changes in the human brain across the adult lifes-

pan, which is a major risk factor for the decline in physical health and cognitive

ability (Cole et al., 2018). Aging also exposes an individual to an increased risk of

cancer (López-Ot́ın et al., 2013) and various neurological disorders such as Parkin-

son’s Disease (Beheshti et al., 2020), vascular dementia (Haan and Wallace, 2004),

headache (Chong et al., 2014; Shah et al., 2024b), mild cognitive impairment (MCI),

and Alzheimer’s Disease (AD) (Franke and Gaser, 2012). However, aging in humans

is a complex and heterogeneous phenomenon. Even though each individual ages at

the same rate chronologically, their biological age does not follow the same trajectory

due to genetic factors, environmental influences, underlying neurological conditions,

and other unknown factors (López-Ot́ın et al., 2013). Measuring this deviation from

normal aging can allow a better understanding of associations between cognitive im-

pairment and aging (Draper and Ponsford, 2008; Gaser et al., 2013) and identify pa-

tients at risk for clinical trials (Cole et al., 2018). Hence, there is a growing interest

in predicting biological age, most commonly derived from an individual’s structural

MRI data. The difference between predicted biological age and chronological age,

also known as the Brain Age Gap Estimate (BrainAGE) (Franke et al., 2010), can be

used to monitor accelerated or decelerated brain aging.

Measuring deviation from normal aging relies heavily on the base model’s perfor-

mance to predict normal aging, i.e., accurately predicting the biological age of healthy
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subjects. A model’s performance on a healthy cohort is often assessed using mean

absolute error (MAE), which calculates the mean of absolute BrainAGE. Existing

deep learning-based regression approaches (Jónsson et al., 2019; Cole et al., 2017; Ito

et al., 2018) have limited clinical applications because the models have reported MAE

4− 5 years in healthy cohorts, suggesting the lack of discriminative power to interro-

gate BrainAGEs of different clinical groups (Gaser et al., 2013). Moreover, a common

challenge in brain prediction models is the issue of systematic bias (Beheshti et al.,

2019; Liang et al., 2019; Zhang et al., 2023a), where there is an overestimation in the

predicted age of young subjects and an underestimation of old subjects. If BrainAGE

were to be used as a reliable imaging biomarker for measuring brain health, the effect

of systematic bias is of concern. For example, AD patients are often aged 50+, and

age underestimation will impact early detection. Studies have investigated whether

this bias is induced due to model or data selection used for training (Liang et al.,

2019). We argue that systematic bias is inherent to brain age prediction due to its

formulation as a regression analysis. This study has two primary objectives:

1. Addressing the systematic bias of regression-to-mean to improve the ro-

bustness of brain age prediction.

2. Enhancing the model’s performance in predicting normal aging in healthy

cohorts, thereby facilitating more accurate disease detection in down-

stream tasks.

Traditionally, brain age estimation is formulated as a regression task since the

problem of interest is understanding which bio-signatures from imaging data have a

statistically significant effect on age. And more importantly, it is clinically relevant to

study how these signatures change across different age groups and track their progres-
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sion. To accomplish this, capturing ordinal information from the ground-truth age is

critical; hence, regression is preferable. However, it is known that regression models

suffer from systematic bias. To address this issue, we propose reformulating the task

of brain age prediction as multi-class classification. However, in classification, each

class is treated independently of the other and hence cannot capture the ordinality of

target labels (Zhang et al., 2023b). To counter this, we propose a novel ORdinal Dis-

tance Encoded Regularization (ORDER) loss in conjunction with cross-entropy loss

for multi-class ordinal classification. ORDER loss (Shah et al., 2024c) is calculated

based on the Manhattan distance between samples in the training mini-batch within

both feature space and target space. As depicted in Fig.3.1, it scales the distance

between learned features in high-dimensional space by a weighted magnitude of the

chronological age difference (see Sec. 3.3.1). We propose a new ordinality metric to

quantify the relative ordering of feature representations compared to their actual tar-

get label ordering. Results show that our proposed framework preserves ordinality in

feature space and improves brain age prediction by a statistically significant amount

compared to existing deep learning approaches (Jónsson et al., 2019; Cole et al., 2017;

Ito et al., 2018).

One challenge in medical imaging is heterogeneity in the quality of MRI scans due

to different scanners and acquisition protocols. Several studies have confined them-

selves to a single cohort to train and evaluate model performance (Jónsson et al.,

2019; Peng et al., 2021), which could affect multi-site studies or generalization per-

formance. Contrary to that, it is shown that deep learning (Mårtensson et al., 2020)

and machine learning models (Franke et al., 2010; Franke and Gaser, 2012; Kaufmann

et al., 2019) are not only robust to scanner differences, but diversity in data due to

heterogeneous sources can improve model generalization. In this study, we decide to

combine cohorts from 5 public data sources to train and validate our model collected
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Figure 3.1: Standard Cross-entropy Vs. Cross-entropy with ORDER Loss: Here,

cross-entropy loss (left) encourages the model to learn high-entropy feature represen-

tations where embeddings are spread out. However, it fails to capture ordinal in-

formation from labels. Our proposed ORDER loss with cross entropy (right, Eq.3.5)

preserves ordinality by spreading the features proportional to the Manhattan distance

between normalized features weighted by absolute age difference. The illustrated ex-

ample (right) shows an embedding space where learned representations of MRI scans

with ages 20, 40, and 80 are distributed apart from one another, with distances pro-

portional to absolute age differences.
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from (1) National Alzheimer’s Coordinating Center’s (NACC), (2) Open Access Series

of Imaging Studies (OASIS) (Marcus et al., 2007, 2010), (3) International Consortium

for Brain Mapping (ICBM), (4) Information eXtraction from Images (IXI), and (5)

Autism Brain Imaging Data Exchange (ABIDE) (Di Martino et al., 2014). Addition-

ally, we evaluate its performance for disease detection on an independent dataset. In

summary, the main contributions of this research are the following:

1. We formulate Brain Age prediction as an ordinal classification task that out-

performs existing regression-based methods by a significant margin.

2. We introduce a novel ORDER loss for classification that preserves the ordinality

in the learned feature space from target labels, which here is Age.

3. Our proposed framework addresses the well-observed issue of systematic bias in

predicted biological age from neuroimaging data.

4. The developed model detected subtle differences between clinical groups of AD,

which were not accurately captured by the regression model or other approaches.

3.2 Related Works

3.2.1 Neuroimaging-based Brain Age prediction

Prior studies on brain age prediction from neuroimaging data (Franke et al., 2010;

Cole et al., 2018; Gaser et al., 2013; Valizadeh et al., 2017; Baecker et al., 2021b;

Liem et al., 2017; Cole et al., 2015; Franke and Gaser, 2012; Beheshti et al., 2020) use

regression techniques such as Gaussian process regression, support vector regression,

and relevance vector regression. These approaches involve extensive pre-processing of

raw structural MRI data and extracting imaging features such as cortical thickness,
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regional volumes, or surface area using tools such as FreeSurfer or Statistical Para-

metric Mapping (SPM). Input to the machine learning models are these pre-processed

brain morphological features, and chronological age is the target variable.

More recent studies have also explored deep neural networks to predict brain age

using raw neuroimaging data (Cole et al., 2017; Jónsson et al., 2019; Peng et al.,

2021; Jiang et al., 2020; Shah et al., 2022b, 2023b; Bashyam et al., 2020) and results

demonstrate that deep neural networks outperform traditional machine learning ap-

proaches given sufficient training data (Bashyam et al., 2020; Cole et al., 2017; Ito

et al., 2018). Since deep learning methods perform automatic feature extraction from

raw structural MRI data, it allows capturing previously unseen imaging signatures

related to aging in the brain and makes the model less prone to any biases from

pre-processing steps, making it more generalizable.

3.2.2 Systematic Bias in Predicted Brain Age

In brain age prediction, predicted biological age is often observed to be system-

atically biased towards the cohort’s mean age (Liang et al., 2019; Le et al., 2018;

Smith et al., 2019; Treder et al., 2021; Beheshti et al., 2019) affected by regression

to the mean (RTM) effect, limiting its potential clinical utility. This causes an unex-

pected overestimation of predicted brain age in young subjects and underestimation

among old subjects. Historically, the RTM effect has been attributed to within-

subject and between-subject variability (Gardner and Heady, 1973). This systematic

bias in predicted brain age is not specific to the choice of learning algorithm, data

sample imbalance across age groups, or imaging data heterogeneity due to different

scanners (Liang et al., 2019). Since brain age prediction is traditionally formulated

as a regression problem, RTM is a characteristic phenomenon of regression analysis.

Recently, Lee and Chen (2025) showed how systematic bias emerges naturally in
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machine learning regression models optimized for mean squared error (MSE) loss. For

tasks like brain age prediction, models achieve lower MSE by systematically under-

estimating high values and overestimating low values (linear central tendency warp).

This mainly occurs because: squared error penalizes large deviations asymmetrically

and predictions regress toward the mean to minimize extreme errors.

Studies that aim to mitigate this systematic bias propose post-hoc correction

methods where predicted age is scaled by slope and intercept derived from regres-

sion of predicted age or BrainAGE (Cole et al., 2018; de Lange et al., 2019; Beheshti

et al., 2019) on chronological age. Le et al. (2018) used chronological age as a covari-

ate when analyzing group-level differences in BrainAGE, whereas Cole et al. (2018)

did not include chronological age in the final adjustment scheme. However, it in-

creased the variance in predicted BrainAGE (Beheshti et al., 2019). Other studies

(Beheshti et al., 2019; de Lange et al., 2019) included chronological age in the final

age adjustment, but these methods are likely to be inaccurate when the age range

of the independent testing dataset differs from the age range of the model’s train-

ing data. Recently, Zhang et al. (2023a) found that these correction methods do not

properly address the systematic bias in predictions. Experiments from that study also

show that even though linear (Beheshti et al., 2019; Cole et al., 2018) and quadratic

(Smith et al., 2019) correction methods push average BrainAGE close to zero, bias

in BrainAGE for same-age subjects gets worse.

More fundamentally, correcting the predicted BrainAGE in a two-step process by

explicitly controlling for age would make downstream analysis questionable. This

highlights the need to develop an end-to-end method that addresses systematic bias

in brain age prediction and is more accurate in predicting normal aging.

33



3.2.3 Regression as Ordinal Classification

Predicting brain age from imaging data is an ordinal classification task (also known

as ordinal regression) since the labels exhibit a natural order. Gutiérrez et al. (2015)

conducted a comprehensive exploration of ordinal classification methodologies, cate-

gorizing them into three main groups: naive approaches using regression or nominal

classification methods, ordinal binary decomposition, and threshold models. How-

ever, the efficacy of ordinal decomposition approaches relies heavily on task-specific

decomposition strategies, while threshold models demand meticulous calibration of

hyperparameters to achieve optimal convergence (Rosati et al., 2022). In this study,

we compare our approach with the nominal classification and regression techniques

previously documented in the literature.

In computer vision, it is shown that classification can outperform regression in

many tasks, such as age estimation from face images (Pan et al., 2018; Lanitis et al.,

2004; Rothe et al., 2018), object counting (Liu et al., 2019), and depth estimation

(Cao et al., 2017b). The target space is discretized into the same-size intervals, and

surprisingly, models are more accurate in predicting a range of values rather than

estimating actual values on a continuous scale. The exact reason for classification

outperforming regression has been less explored before. Zhang et al. (2023b) suggests

that classification benefits from its ability to learn high-entropy feature representa-

tions compared to regression, which accounts for the performance gap. Inspired by

these insights, we transform the task of brain age prediction from regression to multi-

class classification. In brain age prediction, the target output follows a continuous

scale consisting of the human life age span. Despite the performance improvement,

classification models treat each class label independently from each other, where each

wrong prediction is penalized equally. For instance, given a sample with a true age
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of 53, cross-entropy (CE) penalizes the model by the same magnitude if the wrong

prediction was 21 or 52. Hence, the ordinal relationship between target labels is

not accurately captured in learned representations of brain age using CE or other

loss functions proposed in previous studies (Pan et al., 2018; Zhang et al., 2023b)

( Sec. 3.5.2).

One of the initial works that proposed deep learning-based classification for age

estimation from facial images was by Rothe et al. (2018), where they used the ex-

pected mean of softmax weights as the estimated age. Pan et al. (2018) also used

softmax expected value for age estimation with an additional mean-variance loss used

in training. Mean loss minimizes the difference between the mean of the estimated

distribution and the ground truth, while the variance loss minimizes the variance of

the estimated distribution, resulting in a concentrated distribution. Different from

these approaches, Zhang et al. (2023b) observed that classification allows learning

high-entropy feature representation with a more diverse feature set compared to re-

gression. They introduce an Euclidean distance-based loss with mean squared error

(MSE) loss for regression to increase the marginal entropy such that learned features

are spread out while preserving target ordinality. The latter two studies (Pan et al.,

2018; Zhang et al., 2023b) also highlight preserved ordinality in learned feature space

from their proposed approaches. However, for brain age prediction, we show that this

is not the case when compared to a regression model ( Sec. 3.5.2).

3.3 Proposed Framework

Fig.3.2 gives an overview of our framework for robust brain age prediction. In

this section, we first describe our proposed ORDER loss that encodes ordinal infor-

mation within target labels into learned feature space. Then, in addition to MAE,

we define two metrics to measure our model’s performance in preserving ordinality
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Figure 3.2: Overview of Proposed Brain Age Prediction Framework. (a) A 3D ResNet-

18 model is trained using the lifespan cohort with cross-entropy and ORDER as loss

functions. Age is calculated as the weighted average of class probabilities from the

softmax classifier. (b) During inference, the Brain Age Gap Estimate (BrainAGE) is

calculated as the difference between predicted biological age and actual chronological

age. (c) The trajectory plot offers a visual interpretation of predicted BrainAGE and

its associations with aging patterns. The preclinical AD stage is when the patient

behaves cognitively normal, but underlying changes in the brain due to accelerated

aging happening at a subtle rate can be captured using BrainAGE.

and minimizing systematic bias compared to established methods.

3.3.1 ORDER Loss

To better understand the intuition behind the proposed ORDER loss, we first

review the original cross-entropy loss (LCE), which is formulated as:
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LCE = − 1

N

N∑
i=1

yi log(ŷi) = − 1

N

N∑
i=1

log(ŷi)

= − 1

N

N∑
i=1

log
eW

T
yi
xi∑C

j=1 e
WT

yj
xi

(3.1)

where xi is input to the last fully connected layer corresponding to i-th sample from

training data N , yi is the hot encoding of the true label, ŷi is the predicted probability,

and W T
yj

is j-th column of last fully connected layer (j ∈ [1, C], C is number of classes).

W T
yi
xi often denoted as zi, is the target logit of i-th sample (Pereyra et al., 2017).

LCE = − 1

N

N∑
i=1

log
ezi∑C
j=1 e

zj
(3.2)

In brain age prediction, our main aim is to understand how the dependent variable

(age) changes with variations in the independent variables (imaging features). Given a

sample from class c, cross-entropy loss forces zc > zj(∀j ̸= c). However, when the class

labels are ordered, it does not guarantee that learned feature representation follows

the same order, i.e., zc > zc+1 > zc+2 > ... > zC and zc > zc−1 > zc12 > ... > z1. Even

though LCE increases the marginal entropy of feature space, resulting in a diverse

feature set, the marginal ordering between class labels is not correctly captured.

Keeping the diversity of features from LCE intact, we adjust the target logit zi with

the corresponding feature vector xi’s distance to other features xj(∀j ̸= i) in a batch

of samples, weighted by the distance between class labels.

z′i = W T
yi
xi + φ(xi) (3.3)

where,

φ(xi) =
1

N − 1

N∑
j=1,i ̸=j

|i− j||x̄i − x̄j|manh (3.4)
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and x̄ is L2 normalized vector x̄ = x/max(||x||2). Substituting Eq.3.3 in Eq.3.2 we

get new loss LT , which can be decomposed into LCE and ORDER loss (LORDER)

LT = − 1

N

N∑
i=1

log
eW

T
yi
xi+φ(xi)∑C

j=1 e
WT

yj
xi

= − 1

N
[

N∑
i=1

log
eW

T
yi
xi∑C

j=1 e
WT

yj
xi

+
N∑
i=1

φ(xi)]

= − 1

N

N∑
i=1

log
eW

T
yi
xi∑C

j=1 e
WT

yj
xi

− 1

N(N − 1)

N∑
j=1,i ̸=j

|i− j||x̄i − x̄j|manh

= LCE + LORDER

(3.5)

LORDER uses the Manhattan distance to calculate the distance between two fea-

tures xi and xj in high-dimensional space. Euclidean distance is the most common

metric to measure similarity or distances between two data points. However, Aggar-

wal et al. (2001) found that, due to the curse of dimensionality in high-dimensional

space, the sparsity of features is significantly high, making them almost equidistant

from each other. The ratio between the closest and farthest points from a refer-

ence sample approaches 1 in high-dimensional space (Domingos, 2012). This further

explains the inability of a classification model to capture ordinal information. We ex-

plored different orders of distance metrics for ORDER loss, but Manhattan distance

performed best (see Sec.3.5.5).

3.3.2 Evaluation Metrics

Measuring Ordinality

To the best of our knowledge, we found no defined metrics in the literature that

measure the ordinality of feature representations from a deep learning model with
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reference to the order of ground truth. Given n images and c ordered classes, we first

obtain n features of 512 dimensions from the penultimate layer of a trained model

{x1, x2, ..., xn}. From those features, we calculate c feature centroids {f1, f2, ..., fc}

using ground-truth labels corresponding to each class. After that, we compute the

Manhattan distances between f1 and other feature centroid as D = {d12, d13, ...d1c}

where,

dij = |di − dj|manh (3.6)

Since class labels here are age values in a chronologically increasing order, we

get C = {1, 2, ..., (c− 1)} as the distance of the first class to others. We define

the ordinality metric as the Pearson correlation coefficient between D and C. For

a model that perfectly captures ordinal relationships in feature representations, the

ordinality score is close to 1. Pearson’s correlation between two continuous variables

measures how much change in one variable is associated with a proportional change

in the other variable. Using this metric, we evaluate our model’s performance to

capture age-related order information from labels compared to other approaches (see

Tab.3.4). An ordinality score close to +1 indicates that the learned features have a

similar ranking order as their corresponding ground-truth labels, and a lower value

indicates otherwise.

Quantifying Systematic Bias

Previous approaches discussed in Sec.3.3.2 that propose post-hoc correction methods

use correlation of predicted BrainAGE and chronological age as a measure of under-

lying systematic bias (Le et al., 2018; Liang et al., 2019). Using chronological age to

adjust BrainAGE would reduce age dependence on BrainAGE, i.e., r = 0. However,
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it does not address the inherent systematic bias effect caused due to regression. Ad-

ditionally, this correction method would be questionable when the test dataset does

not have the same age range as the training dataset.

To objectively quantify systematic bias caused by regression to the mean effect,

we compare the predicted BrainAGE at one standard deviation away from mean

(Gardner and Heady, 1973), i.e., for values less than (µ−σ) and greater than (µ+σ),

where µ and σ are mean and standard deviation of target age values of the test

set. We refer to these two groups as Systematic Bias - Left and Right (SB-L, SB-

R). Since there is an overestimation of predicted biological age in young subjects

and an underestimation in old subjects, the bias causes higher BrainAGE and lower

BrainAGE values for those respective sub-groups. We compare these scores across

different methods, and a value closer to 0 indicates better performance in addressing

systematic bias (see Tab.3.4).

3.4 Experiment Design

3.4.1 Datasets and Preprocessing

Since most medical imaging datasets are part of multi-center studies, differences

in scanners, imaging protocols, variations in vendors, and their hardware account

for heterogeneity in data. Deep learning models are known to be robust against

heterogeneity in data. In fact, including more heterogeneous data in model train-

ing improves its generalization on out-of-distribution data (Mårtensson et al., 2020).

With that consideration, we used a combined lifespan cohort of 7, 377 T1-weighted

MRI scans of healthy participants from five different public sources.
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Table 3.1: Age Range with Distribution and Number of Samples for Each Cohort.

The Lifespan Cohort Comprises NACC, OASIS, ICBM, IXI, and ABIDE, Whereas

the Discovery Cohort Consists of Samples from the ADNI Cohort.

Dataset Count Age Range (yrs) Mean ± STD (yrs)

NACC 4,132 18 - 95 67.5 ± 10.8

OASIS 1,432 8 - 94 27.9 ± 20.7

ICBM 1,101 18 - 80 37.6 ± 15.4

IXI 536 20 - 86 48.8 ± 16.5

ABIDE 176 18 - 56 26.1 ± 7.0

ADNI 1,584 55 - 98 73.3 ± 7.3

Lifespan Cohort

All the age prediction models were trained, validated, and tested on a healthy cohort

(age: 8-95 years) collected from (1) NACC Uniform Data Set (UDS) from 1999 to

March 2021 (2) OASIS (3) ICBM (4) IXI and (5) ABIDE. These cohorts included both

1.5T and 3T scans with predominantly Caucasian participants but also included other

race/ethnic groups. The number of samples and age range per cohort are summarized

in Tab.3.1.

All five cohorts were preprocessed using an in-house data preprocessing pipeline.

T1-weighted MR images were first aligned to the MNI template with rigid transfor-

mation, and then intensity normalized and conformed using FreeSurfer v7 to generate

preprocessed images at 1 mm isotropic voxels with a 256 x 256 x 256 matrix.
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Alzheimer’s Disease dataset

Additionally, we collected 1, 584 MRI scans from the AD Neuroimaging Initiative

(ADNI) database containing a mix of healthy, cognitively impaired, and AD patients.

We used this cohort as an independent testing and discovery dataset to evaluate

model performance in predicting age and its ability to differentiate clinical groups in

AD. Priority was given to scans with matching PET data and participants who had

longitudinal follow-ups. For healthy controls (HCs), a random subset was selected

from the overall ADNI set and included in this analysis. The diagnostic status was

determined based on ADNI clinical data. In this analysis, HC (N=678) participants

had normal cognition and did not convert to MCI or AD in follow-up visits. HC

to MCI converters (HC-MCI, N=179) are participants who had normal cognition at

baseline but converted to MCI during follow-up. MCI-stable (MCIs, N=432) par-

ticipants had a baseline diagnosis of MCI and stayed unchanged in follow-ups. MCI

to AD converters (MCI-AD, N=139) are those participants with an MCI diagnosis

at baseline and subsequently converted to AD. AD (N=156) patients are those who

were diagnosed with AD at baseline.

Headache dataset

Our institutional dataset of headache patients consisted of T1-weighted MRI data

from 93 individuals diagnosed with migraine, 99 with APTH, and 49 with PPTH, in

accordance with the diagnostic criteria of the International Classification of Headache

Disorders (ICHD) available at the time the participant was enrolled (ICHD-3 beta or

ICHD-3)(of the International Headache Society , IHS). Additionally, we included 104

healthy controls from the Mayo Clinic as the reference group. For each data cohort

and headache disorder, the information of participants is summarized in Tab.3.2.
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All participants were imaged at the Mayo Clinic Arizona. This study was ap-

proved by the Mayo Clinic Institutional Review Board (IRB), and all participants

provided written informed consent for their participation. At the time of enroll-

ment, migraine participants were diagnosed with episodic or chronic migraine, with

or without aura, based on the most recent edition of the International Classification

of Headache Disorders (ICHD-3 beta or ICHD-3). Participants with APTH or PPTH

had PTH attributed to mild traumatic brain injury (mTBI) according to the latest

ICHD criteria (ICHD-3 beta or ICHD-3). Individuals with a history of moderate

or severe traumatic brain injury were excluded from the study. Participants with

APTH were enrolled between 0 to 59 days following mTBI, while those with PPTH

were enrolled at any point after they had PTH for longer than three months. Healthy

controls (HC) were excluded if they had a history of any headache type other than

infrequent tension-type headache.

Image acquisition was performed using 3 Tesla Siemens scanners (Siemens Mag-

netom Skyra, Erlangen, Germany) equipped with a 20-channel head and neck coil.

Anatomical T1-weighted images were captured using magnetization-prepared rapid

gradient echo (MPRAGE) sequences. The imaging parameters for acquiring T1-

weighted images were as follows: repetition time (TR) = 2400 ms, echo time (TE) =

3.03 ms, flip angle (FA) = 8°, and voxel size = 1 × 1 × 1.25 mm³.

The participants with Mig. had a mean age of 39.9 years (±11.6), and 74.7% were

female. They had a mean headache frequency of 15.3 days per month; 37 had episodic

migraine and 59 had chronic migraine. Additionally, 49 patients reported experiencing

an aura with at least some of their migraine attacks. The PTH group included 48

participants with APTH, with a mean age of 41.6 years (±12.7), and 60.4% were

female. Individuals with APTH experienced their first PTH symptoms an average

of 24.5 days (±14.5) prior to imaging. They reported headaches on approximately

43



76.3% (±29.6%) of days following the onset of APTH. Their MTBI was due to motor

vehicle accidents (n = 20), falls (n = 21), and direct hits to the head (n = 7). The

dataset also included 49 patients with PPTH. The mean age of the PPTH patients

was 38.1 years (±10.5 years), and 34.7% were female. PPTH participants experienced

headaches on an average of 15.3 days (±7.4 days) per month. The mTBIs leading

to PPTH were attributed to various causes, including sports-related injuries (n = 8),

falls (n = 12), motor vehicle accidents (n = 7), and blast injuries (n = 22).

Details regarding participant enrollment, demographic characteristics, and other

relevant information of public datasets used here are provided in the original pub-

lications or documentation of the respective datasets. Readers are encouraged to

refer to these sources for comprehensive descriptions of the study populations and

methodologies.

Table 3.2: Summary of Age Range with Distribution and Number of Samples for

Each Cohort.

Source Number of subjects Diagnostic status Age Range (years)

Mayo Clinic,

Arizona

99 Acute PTH 18–70 (42.2 ± 15.3)

49 Persistent PTH 19–63 (38.1 ± 10.6)

93 Migraine 22–66 (39.6 ± 11.7)

137 HC 18–66 (39.5 ± 12.0)

ABIDE 176 HC 18–56 (26.1 ± 7.0)

ICBM 1,101 HC 18–80 (37.6 ± 15.4)

IXI 536 HC 20–86 (48.8 ± 16.5)

NACC 4,132 HC 18–95 (67.5 ± 10.8)

OASIS 1,432 HC 8–94 (27.9 ± 20.7)

PTH = post traumatic headache; HC = healthy controls.
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3.4.2 Implementation Details

A 3D ResNet-18 was adopted as the base deep-learning model, and the input to

the model is 3-dimensional MRI scans with a batch size of 4. Stratified oversampling

was employed in classification models, and for regression, we stratified samples based

on age groups (8−12, 12−16, ..., 92−96) to perform oversampling. We used AdamW

optimizer with a 1e−3 learning rate and weight decay of 1e−2. Each model was

trained for 100 epochs with early stopping to avoid over-fitting. All experiments were

performed on NVIDIA’s A100 80GB GPUs to train, validate, and test the models.

The implementation code is made public for reproducibility and further research1 .

We evaluate our proposed brain age prediction framework and other baseline meth-

ods on a combined healthy cohort using three different metrics specific to this task.

Evaluation metrics include MAE, Ordinality, and Systematic Bias scores.

3.5 Results and Analyses

3.5.1 BrainAGE prediction

We compare our proposed method’s performance in predicting the brain age of

healthy individuals from a lifespan cohort to four baseline methods, including two

regression and two classification models (Tab.3.3). For classification models, age

values were rounded off to the closest integer and assigned respective class labels.

Only 535(7.3%) samples from the lifespan cohort had non-integer age values.

Our model performed best on the healthy test set with MAE 2.56, outperform-

ing standard MSE and cross-entropy loss models. Among other competing meth-

ods, the classification model with mean-variance loss performed best. Model with

cross-entropy loss outperforms MSE model due to its ability to learn high entropy

1https://github.com/jaygshah/Robust-Brain-Age-Prediction
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Figure 3.3: A T-SNE Visualization of Embeddings from Models’ Penultimate Layer:

(a) When using MSE loss, embeddings maintain ordinal relationships but are tightly

packed, resulting in a low-entropy feature space (b) MSE with Euclidean distance

loss spreads out embeddings but struggles to preserve ordinal relationships accurately

(c) Cross-entropy (CE) further spreads embeddings, creating a high-entropy space,

but at the cost of losing ordinal information (d) Mean-variance loss combined with

cross-entropy creates a high-entropy feature space and slightly improves ordinality

(Tab.3.4). (e) ORDER loss combined with cross-entropy achieves the best balance: it

accurately preserves ordinality, maintains a high-entropy space, and improves overall

performance. Embeddings are color-coded based on their ground truth age values

[10 − 95].

features (Fig.3.3), where inter-class features are spread out, and intra-class features

are compact (Boudiaf et al., 2020). Surprisingly, adding an Euclidean distance-based

regularizer to the MSE loss did not improve the regression model’s performance. Our

method’s performance is also significantly better than MAE reported by prior studies

using regression analysis (Ito et al., 2018; Jónsson et al., 2019; Cole et al., 2017),

however, on different cohorts.

3.5.2 Ordinality and Systematic Bias

We further evaluate our model’s ability to preserve ordinality and address sys-

tematic bias in predicted BrainAGE using metrics defined in Sec.3.3.2 and Sec.3.3.2.
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Table 3.3: Brain Age Prediction Results on Lifespan Cohort. Here, MAE measures

the difference between predicted and actual chronological age on the same test set.

Here, bold numbers represent the best results, while underlined numbers represent

second-best results.

Method MAE

MSE 3.93

MSE + Distance (Zhang et al., 2023b) 4.57

CE (Rothe et al., 2018) 3.33

CE + Mean-Variance (Pan et al., 2018) 2.65

CE + ORDER (Ours, Shah et al. (2024c)) 2.56

As expected, the model with MSE loss had the highest ordinality score (Tab.3.4).

Our classification model with ORDER loss had an ordinality score much closer to

standard MSE loss than other methods, demonstrating its effectiveness in learning

ordinal information. Fig.3.3 offers a visual comparison of learned feature space using

different loss functions to confirm this further.

Furthermore, the model with ORDER loss also performed best in reducing sys-

tematic bias measured by average BrainAGE values at one standard deviation away

from the mean. The mean of the test set was 53.4 with a standard deviation of 22.2.

Hence, the bias scores reported in Tab.3.4 are BrainAGE values for age < 31.2 (SB-L)

and age > 75.6 (SB-R). Values closer to zero reflect a better reduction in systematic

bias. Both MSE-based models had a higher systematic bias due to the inherent RTM

effect. Due to its ability to learn class-specific and diverse feature sets, cross-entropy

loss reduces bias effects for SB-L and SB-R groups. Incorporating order information

allows the model to learn the relative ranking of labels, further improving ordinal
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Table 3.4: Performance Evaluation of All Methods in Preserving Ordinality and Ad-

dressing Systematic Bias in Brain Age Prediction Using Metrics Defined In Sec.3.3.2

and Sec.3.3.2. Here, systematic bias is measured one standard deviation from mean:

systematic bias-left (µ− σ) and right (µ + σ) [SB-L, SB-R].

Method Ordinality
Systematic Bias

SB-L SB-R

MSE 0.99 3.4 -4.2

MSE + Distance 0.95 4.8 -4.1

CE 0.31 1.1 -3.6

CE + Mean-Variance 0.58 0.4 -4.2

CE + ORDER 0.98 0.1 -2.5

classification performance.

3.5.3 Alzheimer’s Disease detection

AD has a prolonged preclinical phase where brain changes manifest subtly as

accelerated aging (Long and Holtzman, 2019). Fig.3.2 illustrates this phase, showing

accelerated aging diverging slightly from normal aging. MCI, a pre-dementia stage,

involves greater cognitive decline than typical aging (Selkoe, 1997). BrainAGE can

help detect and monitor this stage early.

We use our discovery cohort (Sec.3.4.1) obtained from ADNI with five clinical

groups to test BrainAGE prediction using different methods. Trained models were

applied to this cohort using the abovementioned methods to calculate BrainAGE.

These five groups were ranked [1− 5] in an increasing order of disease severity as HC

< HC-MCI < MCI-stable < MCI-AD < AD. Since disease severity is proportional
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to accelerated aging, we expect the average predicted BrainAGE to follow the same

order. Pearson correlation was calculated between the model’s predicted BrainAGE

and the rank of disease severity. A high correlation would indicate the model’s ability

to accurately characterize aging signatures along the AD continuum via estimated

BrainAGE. From Tab.3.5, we see that only the model with MSE and our proposed

loss has a high correlation.

We further compare the ability of MSE and ORDER loss models to detect subtle

differences between these clinical groups accurately. From Fig.3.4, we see that the

MSE model had a more disruptive trend in predicted BrainAGEs between groups,

i.e., there was a higher difference between AD and MCI-AD (p = 0.16) compared to

AD and MCI-stable (p = 0.56). Whereas the ORDER loss model had an overall con-

sistent trend in statistical significance between groups associated with actual disease

severity, highlighting its better discriminative power. It also better detected differ-

ences between HC and HC-MCI subjects (p = 0.07) compared to MSE (p = 0.34),

which is crucial for early AD detection. Although our model’s performance wasn’t

as strong as MSE in distinguishing between HC-MCI and MCI-stable, we posit that

this could be attributed to the definitions of clinical groups used here. The absence

of clinical tools to definitively differentiate HC-MCI from MCI-stable groups, given

that subjects exhibit normal cognitive behavior and no discernible symptoms despite

age-related brain changes, might contribute to this outcome. We plan to work with

a clinician to further investigate these observations from both groups.

3.5.4 Headache Phenotypes

Fig.3.5 summarizes the trend of the neuroimaging-derived aging biomarker and

its association with headache severity and different phenotypes. The model predicted

∆age using baseline imaging was significantly higher for patients with migraine (3.74±
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Table 3.5: Average Brainage Values Across the Five Clinical Groups of AD. The

last column is the Pearson correlation between average BrainAGE values and disease

severity of clinical groups in increasing order from HC to AD (1-5). MV: Mean-

Variance.

Method HC HC-MCI MCIs MCI-AD AD Correlation

MSE -1.2 -0.8 -0.3 0.8 1.5 0.98

MSE + Distance -2.7 -1.9 -1.7 -0.9 0.9 0.94

CE -1.9 -1.5 -3.4 -2.3 -4.1 -0.75

CE + MV -1.6 -0.3 -0.5 0.8 2.8 0.94

CE + ORDER -1.5 -0.8 -0.3 1.2 2.0 0.98

Figure 3.4: Heatmap of Statistical Significances Between the Five Clinical Groups of

AD Calculated as p Values from a T-test on Predicted BrainAGE from Respective

Groups, for MSE and Cross-entropy with ORDER Loss Models.

1.03 years, p = 0.03) and PPTH (4.65 ± 1.41 years, p = 0.01) compared to healthy

controls (0.46±0.87 years). For APTH patients, ∆age was higher compared to healthy
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controls (1.25 ± 0.87 years) with statistically significant differences compared to the

PPTH (p = 0.04) and migraine (p = 0.08) groups. One-way ANOVA analysis revealed

a statistically significant effect of group on ∆age (F = 3.53, p < 0.05), indicating

that the model-predicted ∆age varied significantly across the groups. Although the

differences between APTH and healthy control (p = 0.55) and PPTH and migraine

(p = 0.67) groups were not significant with pair-wise t-tests.

Figure 3.5: Brain Age Delta (Predicted–chronological Age) Across Different Headache

Phenotypes on the Mayo Clinic Dataset

To further investigate whether the neuroimaging features learned by our brain age

prediction model could differentiate between headache phenotypes, we extracted the

512-dimensional latent representations from the final layer of the ResNet-18 model

for each participant. These latent features were then subjected to linear discrimi-
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nant analysis (LDA) using the participants’ headache phenotype labels (Migraine,

Persistent PTH, Acute PTH, and Healthy Controls) as the basis for supervised di-

mensionality reduction and clustering.

Figure 3.6: Visualization of Headache Phenotype Clustering in a 3D LDA-reduced

Feature Space. The plot demonstrates three discernible clusters, effectively separating

Migraine, persistent PTH, acute PTH, and healthy control groups based on model-

extracted neuroimaging features. Each dot represents an individual subject.

The LDA revealed a clear separation of the headache phenotypes in the reduced

dimensional space, indicating that the latent features encode distinct neurobiological

signatures associated with different headache conditions. Visual inspection of the
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LDA plot (see Fig.3.6) demonstrated the formation of four discernible clusters, sug-

gesting that the model captures patterns that group subjects based on their headache

classification. Quantitative evaluation of this clustering further substantiated the ro-

bustness of these groupings. A Silhouette Score of 0.602 indicated that clusters were

well-separated and internally dense, with data points showing greater similarity to

their assigned cluster than to neighboring clusters. This was complemented by a

Calinski-Harabasz Index of 645.986, where a higher value signifies well-defined and

distinct clusters. Furthermore, a Davies-Bouldin Index of 0.542, for which lower val-

ues are preferable, confirmed that the clusters were compact and effectively separated

from one another. Collectively, these metrics provide strong quantitative support for

the observation of distinct, meaningful groupings within the latent space that corre-

spond to the predefined headache labels. Similar to our earlier research (Rahman Sid-

diquee et al., 2023), we will investigate which brain regions were identified as most

significant by the brain age prediction model within each headache phenotype.

3.5.5 Ablation studies

Distance Metric: We explored different Lk norm distance metrics for ORDER loss

and found Manhattan distance best performing across all evaluation measures. Lk

norm distance between two points x and y in high-dimensional space, given (x, y ∈

Rd), is be defined as:

Lk(x, y) =
d∑

i=1

[||xi − yi||k]
1
k (3.7)

Aggarwal et al. (2001) showed that Manhattan distance (k = 1) is a more suit-

able distance metric than Euclidean (k = 2) for high-dimensional data. They recom-

mended using k ≤ 1 to improve downstream classification performance. Later studies

showed that fractional distance metrics, i.e., (k < 1), do not systematically address
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Table 3.6: Ablation Studies on the Proposed Framework Components Evaluated by

MAE, Ordinality, and Systematic Bias Scores. Here, k denotes different Lk-norm

distance metrics defined in Eq.3.7

.

k Loss MAE Ordinality
Systematic Bias

SB-L SB-R

1/2 CE 6.05 0.85 5.31 -5.19

2/3 CE 18.51 0.13 30.67 -28.27

1 CE 2.56 0.98 0.11 -2.5

1 MSE 4.66 0.95 2.19 -4.98

2 CE 2.90 0.10 0.93 -3.04

2 MSE 4.57 0.95 4.83 -4.13

the issue of the curse of dimensionality (Mirkes et al., 2020) but should be a choice

depending on the training data distribution. For the high-dimensional neuroimaging

dataset used here, we found Manhattan distance more accurate at preserving ordi-

nality and improving class separability compared to Euclidean or fractional distance

metrics (see Tab.3.6).

ORDER loss with Classification vs. Regression: We experimented with the

proposed ORDER loss using both classification and regression frameworks. As dis-

cussed in the paragraph above, since Euclidean and Manhattan distances performed

significantly better than fractional distances, we explored regression models with our

loss for k = {1, 2} (Tab.3.6). Results show that distance-based regularization does

not work well in regression models. Our model with cross-entropy loss and Manhattan

distance-based ordinal regularization performed best across the three metrics.
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3.6 Conclusion

This paper proposes a novel ordinal-distance regularization loss for robust brain

age prediction using deep learning. We show that this loss in an ordinal classifica-

tion framework outperforms regression-based brain age prediction methods, reduces

systematic bias in predictions, and preserves ordinality in learned feature space. Im-

proved performance is attributed to ordering information encoded in the model using

ORDER loss and the ability of cross-entropy loss to learn high-entropy feature rep-

resentations. The predicted BrainAGE from this model is a more reliable imaging

biomarker for diagnosing AD and headache and predicting its early onset. We believe

this framework can be generalized to other regression tasks to improve prediction and

address the RTM effect, if present, which we aim to investigate further in future work.
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Chapter 4

LOCALITY CONSTRAINED VECTOR QUANTIZATION

4.1 Motivation

The previous chapter focused on developing a novel deep learning method to aid

the early detection of neurological disorders using high-dimensional imaging data such

as MRI. Amid the rapid growth of modern medicine, it is no surprise that medical

imaging has become crucial for accurate diagnosis by physicians and computer-aided

tools (Hong et al., 2020). However, there is a more practical problem that poses

a great challenge to deploying these technological solutions for clinical applications-

the sheer volume of this imaging data that places heavy demands on storage capacity

(Elhadad et al., 2024). For example, FreeSurfer1 preprocessing requires 300−370MB

of storage per image, which would multiply to terrabytes of data for data cohorts of

size included in studies similar to ours (Tab.4.1). Additionally, while telemedicine is

emerging as a key trend, limited transmission bandwidth poses a significant challenge.

To address these issues, extensive research has focused on the compression of medical

images (Liu et al., 2017; Hussain et al., 2018; Xin and Fan, 2021; Elhadad et al., 2024)

to make it more practical for storage or training deep learning models in low-resource

settings.

Lossless image compression techniques such as Huffman coding (Huffman, 1952)

and arithmetic coding (Langdon and Rissanen, 1981) can reconstruct identical original

images. However, such methods can only obtain a low compression ratio around 1 to

4; a higher compression ratio is hard to obtain (Jiang et al., 2012). Lossy compression

1https://surfer.nmr.mgh.harvard.edu/fswiki/DownloadAndInstall5.3

56



techniques leverage the limitations of human perception to achieve higher compression

ratios, where they remove data that is less noticeable to the human eye (Spaulding

et al., 2002). Although for medical imaging analysis, physicians and scientists prefer

to work with uncorrupted data, and the modest compression offered by lossless coding

is often insufficient for either storage or downstream purposes. In these cases, a lossy

compression method that preserves the diagnostic information is needed.

Vector Quantization (VQ) is an efficient information source coding method, and

quantization is one of the core components in lossy image compression. The principle

of it is constructing a vector based on several scalar data groups, so in theory, vector

quantization coding is superior to scalar quantization coding. VQ (Gray, 1984; Van

Den Oord et al., 2017) is a foundational technique in signal processing for discretiz-

ing continuous data spaces through codebook-based representations. While effective

for compression, traditional VQ methods lacked integration with deep learning frame-

works for end-to-end representation learning. The advent of Variational Autoencoders

(VAEs) introduced a probabilistic approach to learning continuous latent spaces via

encoder-decoder architectures, enabling powerful data generation and reconstruction.

However, standard VAEs suffered from limitations such as posterior collapse (Van

Den Oord et al., 2017), where latent variables become uninformative and inefficient

latent utilization due to their continuous nature. These challenges motivated the de-

velopment of vector quantized variational autoencoders (VQ-VAEs), which synergize

VQ’s discrete codebooks with VAEs’ generative capabilities. By quantizing encoder

outputs to the nearest codebook vector, VQ-VAE enforces a structured discrete la-

tent space that inherently avoids posterior collapse while maintaining gradient flow

via the straight-through estimator (Bengio et al., 2013). This architecture achieves

state-of-the-art performance in unsupervised phoneme discovery, speaker conversion,

and high-fidelity image generation, while later extensions like VQ-VAE-2 introduced
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hierarchical quantization for multi-scale feature learning.

Among many other challenges in training VQVAE architectures, codebook col-

lapse is a significant challenge (Takida et al., 2022; Huh et al., 2023; Baykal et al.,

2024), occurring when only a small subset of the learned discrete codebook vectors are

consistently selected during training, leaving many vectors underutilized or entirely

“dead”. This challenge is mainly introduced by the use of the straight-through-

estimation (STE) technique, which effectively reduces the model’s representational

capacity, hindering its ability to capture the diversity of the input data and po-

tentially degrading reconstruction quality. To address this, various techniques have

been proposed, like-stochastic sampling, which introduces randomness to encourage

exploration of less-frequently chosen codes (Takida et al., 2022), repeated K-means,

which aims to initialize a more robust codebook offline ( Lańcucki et al., 2020), and

replacement policies, which actively monitor usage and reset inactive codes citep

zeghidour2021soundstream. Recently, Finite Scalar Quantization (FSQ), proposed

by Mentzer et al. (2023), circumvents the problem by adopting a different quantiza-

tion strategy altogether, avoiding the traditional vector codebook structure. However,

these approaches can have limitations: stochasticity might introduce noise into the

codeword selection process to diversify usage during training. Further, this does not

ensure consistent and meaningful selections, even though it encourages a more uni-

form codebook utilization with external regularization. Replacement policies can be

heuristic fixes that don’t necessarily improve the relevance of selected codes, whereas

FSQ changes the quantization paradigm. Different from these, Baykal et al. (2024)

recently introduced evidential uncertainty into the quantization process, effectively

softening hard assignments and allowing for probabilistic selection of latent codes.

Crucially, most of these methods do not explicitly leverage the learned geometric

relationships between the codebook vectors themselves during the online lookup pro-
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cess.

4.1.1 Role of distance metric in Quantization

More generally, the problem of VQ can be described as follows: Suppose that

we have a set H of n samples x1, x2, . . . , xn in Rd that we want to partition into

exactly c disjoint subsets H1, . . . ,Hc. Each subset is to represent a cluster, with

samples in the same cluster being somehow more similar than samples in different

clusters. Each member of the ith cluster is assigned to a reproduction vector vi drawn

from c reproduction codewords. Usually, Euclidean distance is used to find the most

similar or closest vector in the codebook for this assignment (Van Den Oord et al.,

2017; Zeghidour et al., 2021). The most important question in any design of a vector

quantizer is how to determine “more similar”, where similarity measures can be in

the form of distance metrics. A general form of the distance between vectors x and

m is

D = ∥x−m∥2A = (x−m)′A−1(x−m)

where A is any positive definite d×d matrix. The most common idea of measuring

the similarity between two patterns x and z is to measure the Euclidean distance

D = ∥x− z∥2I , where I is the identity matrix. The smaller the distance, the greater

the similarity. However, choosing the Euclidean distance to measure dissimilarity

assumes an isotropic feature space weighting. Consequently, the resulting clusters

will be invariant to rigid-body motions of the data in the feature space (translation

and rotation). Nevertheless, a simple scaling of the coordinate axes can result in a

different grouping of data into clusters. In such cases, scaling becomes important, and

Euclidean distance clustering is not appropriate. An alternative distance metric that

depends on the distribution of the data itself is the Mahalanobis distance where in

59



equation 1 A becomes the covariance matrix of a pattern population, m is the mean

vector, and x represents a variable pattern.

4.1.2 Locality in Quantization

The importance of locality (codebook neighborhood) is largely overlooked in mod-

ern deep learning based quantization approaches. In an earlier research work, Wang

et al. (2010) emphasized the importance of preserving local geometric consistency

in feature representation. They proposed locality-constrained linear coding (LLC),

where instead of representing an input using a global linear combination over an en-

tire codebook or a single codebook vector, it is more effective to encode inputs using

only a local subset of basis vectors—those that are closest in feature space—thereby

maintaining the manifold structure of the data. This property is particularly impor-

tant in deep neural networks where slight distortions in intermediate representations

can propagate and amplify through subsequent layers.

The effectiveness of locality constraints stems from their ability to reduce re-

construction error. While traditional vector quantization (VQ) represents each de-

scriptor by a single basis in the codebook (resulting in large quantization errors),

locality-constrained methods enable more accurate reconstruction by allowing mul-

tiple bases to contribute. Somewhat similar to that, additive quantization’s (AQ)

core idea is to represent a vector as a sum of multiple codewords, although each from

a separate codebook, which allows finer-grained approximation than standard VQ

(Babenko and Lempitsky, 2014). Recent research has extended locality-based ap-

proaches to address the challenges of neural network quantization (Lee et al., 2023).

Their framework combines a transformer encoder with a locality-aware decoder to

effectively capture local information in data. This approach selectively aggregates

latent tokens via cross-attention mechanisms for coordinate inputs and progressively
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decodes with coarse-to-fine modulation through multiple frequency bandwidths.

The core insight of our method is that neural network weights exhibit locality

patterns similar to those observed in natural data distributions. Our quantization

method extends these locality principles to neural network compression. Similar to

how LLC uses local coordinates rather than global combinations, it identifies and

preserves neighborhood relationships in the weight space.

Key observations here:

1. Most quantization methods use Euclidean distance, which assumes uni-

form geometry-neglecting the internal geometry of the codebook—its dis-

tribution, correlation, and anisotropy. Mahalanobis distance adjusts for

these variations by accounting for the covariance in the data.

2. Enforcing locality in quantization can better preserve semantic continuity

using similar or neighboring codewords and discourage over-reliance on a

few dominant codewords, potentially mitigating codebook collapse.

We propose a novel quantization method that integrates statistical locality into the

codeword assignment process by leveraging the Mahalanobis distance metric. Unlike

conventional vector quantization approaches that rely on Euclidean distance—which

assumes isotropic feature space and ignores inter-feature correlations—our method

computes a global covariance matrix over the codebook embeddings and uses its

inverse to measure similarity between latent vectors and codewords. During quanti-

zation, each input embedding is compared to all codewords using this Mahalanobis

metric, and the top-K closest codewords are selected. Rather than performing a hard

assignment to a single nearest neighbor, we average the embeddings of these top-K
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codewords to produce a soft, locality-preserving quantized representation. This strat-

egy promotes robust codebook utilization, preserves local geometric structure in the

latent space, and reduces the risk of codebook collapse without relying on stochastic

sampling or heuristic replacement strategies. Please refer to Sec.4.3 for a detailed

workflow of this method.

In summary, the contributions of this chapter include:

1. A novel Mahalanobis distance-based vector quantization scheme for VQ-VAE,

which selects multiple nearest codebook vectors (k = 25) for each latent and

thus incorporates latent distribution information during quantization;

2. An integrated framework applying this quantization to 3D brain MRI, demon-

strating improved reconstruction fidelity and morphology preservation as com-

pared to a state-of-the-art VQ-VAE baseline (Tudosiu et al., 2024).

3. Evidence that the proposed compression enhances downstream task perfor-

mance, illustrated by improved brain age prediction on public datasets relative

to baseline compression.

To our knowledge, this is the first work to leverage Mahalanobis distance in the

VQ-VAE quantization process for medical images, and to show that doing so can

yield not only better compression but also tangible benefits for a clinically relevant

prediction task.

4.2 Related Works

Generative deep learning models have been increasingly used in neuroimaging to

address data scarcity and augment datasets (Khader et al., 2023). Tudosiu et al.

(2024) recently leveraged a VQ-VAE with a transformer to generate synthetic 3D
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brain MRIs that preserved realistic anatomy. Their morphology-preserving gener-

ative model was validated with rigorous comparisons of tissue segmentations and

volumetric measures between real and generated brains, confirming that key anatom-

ical structures (e.g. ventricles, hippocampus) remained plausible. This represents a

significant advance, as prior GAN-based approaches often produced visually realistic

images but did not guarantee that the finer morphometric details were accurate. The

success of VQ-VAE in capturing brain anatomy suggests it is a promising tool not only

for generation but also for compression and representation learning in neuroimaging.

4.2.1 Addressing Codebook collapse in VQ

Codebook collapse is a critical failure mode in vector quantization systems, char-

acterized by the underutilization of codebook elements where only a small subset

actively participates in quantization (Zeghidour et al., 2021). While the precise rea-

son remains an open research question, empirical observations suggest that codebook

vectors closer to encoder embeddings receive stronger gradient signals during training,

leading to preferential updates causing distributional divergence between frequently

used and inactive codes (Huh et al., 2023). This phenomenon, termed internal code-

book covariate shift, progressively marginalizes underused vectors, effectively reducing

the model’s representational capacity.

Heuristic approaches, such as codebook reset policies, replace inactive codes with

randomly sampled vectors or convex combinations of active neighbors (Zeghidour

et al., 2021). While simple to implement, these methods require careful tuning of re-

placement timing and frequency to avoid destabilizing training dynamics. Takida

et al. (2022) introduced stochastic quantization (SQ-VAE), where randomness is

added to the code selection to encourage diversity and better codebook utilization.

Others have employed the Gumbel-Softmax trick (Jang et al., 2016) to create a differ-
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entiable relaxation of quantization, allowing smoother gradient updates and reducing

the codebook training instability.

Alternative quantization paradigms such as Additive Quantization (AQ) and Prod-

uct Quantization (PQ) have been proposed to address limitations of hard nearest-

neighbor assignment and improve codebook utilization. AQ represents an input vec-

tor as the sum of codewords drawn from multiple codebooks, allowing finer-grained

approximations in high-dimensional or non-Euclidean latent spaces by minimizing er-

ror with respect to the inner product distance (Babenko and Lempitsky, 2014). This

is particularly effective in domains like image retrieval and recommendation systems,

where inner-product similarities dominate. In contrast, PQ divides the vector space

into orthogonal subspaces and quantizes each independently (Jegou et al., 2010), ef-

fectively reducing quantization error in Euclidean settings by leveraging the local

structure of high-dimensional embeddings. PQ has been widely adopted in approx-

imate nearest neighbor search due to its strong balance between compression effi-

ciency and search accuracy. Both approaches highlight the importance of structured

or distribution-aware quantization, aligning with recent efforts to address codebook

underutilization in VQ-based models.

4.2.2 Locality and Soft Quantization

Locality-based approaches in vector quantization represent an important advance-

ment that addresses key limitations of traditional VQ methods. While conventional

vector quantization focuses primarily on minimizing overall quantization error across

the entire feature space, locality-based methods explicitly consider the spatial or

feature-space relationships between data points during the quantization process. This

consideration of local structure is particularly important when working with high-

dimensional data that often lies on a lower-dimensional manifold, where preserving
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neighborhood relationships becomes crucial for maintaining the intrinsic geometric

structure of the data. Locality-based quantization techniques attempt to preserve

these local relationships, resulting in more meaningful and effective representations

for tasks such as similarity search, pattern recognition, and data compression.

Earlier research methods, such as locality-constrained linear coding (LLC), di-

rectly align with locality-based quantization principles, particularly for image classi-

fication tasks. Unlike traditional vector quantization, which suffers from high quanti-

zation error due to its reliance on a single basis vector for reconstruction, LLC employs

local-coordinate projections to preserve geometric relationships between descriptors.

This approach aligns with the broader goal of locality-based quantization to maintain

data manifold structures in high-dimensional spaces.

Soft quantization methods address codebook collapse by reformulating the dis-

crete latent representation learning process through differentiable relaxations of hard

assignment operations (Jang et al., 2016; Agustsson et al., 2017). These approaches

fundamentally reconceptualize quantization as a probabilistic or stochastic mapping

rather than a deterministic argmax operation, enabling gradient-based optimization

while mitigating the tendency of models to underutilize codebook vectors. The theo-

retical underpinnings of these methods often draw from variational inference, where

the quantization process is framed as an approximation of an intractable posterior dis-

tribution over discrete latent codes. Gumbel-Softmax quantization (Jang et al., 2016),

for instance, introduces a continuous relaxation of categorical distributions through

temperature-controlled sampling from the Gumbel extreme value distribution. In

contrast, soft-to-hard vector quantization frameworks (Agustsson et al., 2017) adopt

an annealing strategy that progressively sharpens the softmax weighting of codebook

similarities. These methods parameterize the assignment probability as

ϕ(z) = softmax
(
−β∥z − cj∥2

)
,
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where β serves as an inverse temperature parameter that is gradually increased dur-

ing training. Theoretically, this creates a smooth optimization landscape during the

early stages of training, allowing the codebook vectors to adapt more effectively to

the distribution of encoder outputs. As β increases, the softmax distribution becomes

sharper, leading to near-deterministic assignments and tighter clustering around spe-

cific codewords.

Despite the probabilistic relaxations of these soft quantization methods, they

largely overlook the intrinsic geometric structure of the latent space in their dis-

tance metrics. Conventional approaches universally rely on Euclidean distance for

measuring encoder-codebook alignment, implicitly assuming isotropic Gaussian dis-

tributions in the latent space. This simplification fails to account for the anisotropic

covariance structure of real-world data distributions, where features exhibit varying

scales and inter-dimensional correlations. The Euclidean paradigm forces codebook

vectors to adapt to this mismatched geometry, which might create suboptimal quan-

tization boundaries that cause collapse in regions of high data curvature. Moreover,

these methods can lack adaptive metric learning mechanisms to dynamically adjust

the similarity measure during training as the latent space evolves.

4.3 Proposed Framework

In this section, we introduce the locality constrained vector quantization (LCVQ)

as an improved replacement of VQ that addresses the challenge of codebook collapse

discussed in Sec.4.2.1.

4.3.1 Locality Constrained Vector Quantization

Zeghidour et al. (2021) proposed that the codebook should be initialized by the

K-means centroids of the first batch in the training process. Building on that, the
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idea behind the proposed method is to allow each cluster (codebook element) to have

its own “shape” implied by the covariance matrix of the data within that cluster.

During quantization, each codebook element would attract those data points that

enhance the shape and reject those that do not fit. In other words, each vector x

will be assigned to the cluster to which it best integrates, regardless of the Euclidean

separation between that data point and that codebook element.

In the proposed quantization approach, we aim to find an optimal neighborhood

of codebook elements to a given data point x that takes into account the variance and

correlation among the features of codebook elements. This means that it effectively

“whitens” the data, so the neighborhood around a point becomes an ellipse whose

shape reflects the local data distribution. In practice, this allows Mahalanobis dis-

tance to capture local structure more accurately in anisotropic or correlated datasets,

as it scales distances based on the underlying statistical variability rather than raw

geometric separation.

In this approach, we compute the Mahalanobis distance between a set of query

vectors and a codebook, where the Mahalanobis distance takes into account the co-

variance structure of the codebook vectors. It emphasizes local data structure by

normalizing distances based on local covariance. It helps in selecting codebook el-

ements that are locally relevant, which is key for methods like LLC (Wang et al.,

2010).

Let the codebook vectors be denoted as wi ∈ RD for i = 1, 2, . . . , N , where D

is the dimensionality of each codebook vector and N is the size of the codebook.

Similarly, let the input vectors (queries) be denoted as xj ∈ RD for j = 1, 2, . . . , B,

where B is the batch size.

First, we compute the covariance matrix of the codebook vectors. To do so,

we first subtract the mean of the codebook vectors from each vector, producing a
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mean-centered codebook matrix Wcentered, where:

Wcentered = W − 1

N

N∑
i=1

wi

The covariance matrix Σ is then computed as:

Σ =
1

N − 1
WT

centeredWcentered

where Σ ∈ RD×D is the covariance matrix, and the division by N−1 ensures unbi-

ased estimation. To calculate the Mahalanobis distance between each input vector xj

and each codebook vector wi, we first compute the difference vector dji = xj −wi,

and then the Mahalanobis distance DMahalanobis(xj,wi) is given by:

DMahalanobis(xj,wi) =
√

dT
jiΣ

−1dji

where Σ−1 = pinv(Σ) is the inverse covariance matrix (or pseudo-inverse in case

of ill-conditioning) computed to ensure numerical stability. This formula computes

the distance by normalizing the difference vector dji with respect to the covariance

matrix Σ.

After calculating the Mahalanobis distances, the next step is to find the top-K

nearest neighbors for each input vector. This is done by sorting the distances and

selecting the smallest K values for each query xj. The indices of the top-K nearest

codebook vectors are denoted as Ij, where:

Ij = argsort(DMahalanobis(xj,wi))[: K]

Finally, we quantize the input vector xj by averaging the embeddings correspond-

ing to the K nearest codebook vectors, which gives the quantized representation qj

of the input vector, where each qj is the mean of the K nearest codebook vectors:
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qj =
1

K

∑
i∈Ij

wi

By using the Mahalanobis distance metric, our quantizer adapts to the distribution

of the codebook itself, i.e., training data distribution (Zeghidour et al., 2021), which is

crucial in high-dimensional, correlated data. Additionally, selecting top-K codewords

and averaging them avoids hard assignment, leading to smoother representations and

better generalization (similar to soft quantization techniques). It is known that the

Mahalanobis distance naturally penalizes dimensions with high variance and reduces

the influence of noisy features. Instead of relying on randomness (like stochastic

sampling), our method encourages utilization by leveraging feature covariance, leading

to more semantically meaningful usage and hence doesn’t need hand-designed policies

for replacing codewords—codebook usage emerges naturally from the distance metric.

Algorithm 1: Mahalanobis-based Top-K Quantization for a single input x

Input: x ∈ RD, C ∈ RN×D (codebook), K

C̄ = C − mean(C) # Center codebook

Σ = 1
N−1

C̄⊤C̄ # Compute covariance

Σ−1 = pinv(Σ) # Pseudo-inverse for stability

di =
√

(x− Ci)⊤Σ−1(x− Ci) ∀i = 1, . . . , N # Mahalanobis distances

I = argsort(d)[1 : K] # Indices of top-K neighbors

q = 1
K

∑
i∈I Ci # Average embeddings

Return q

4.4 Experiment Design

Our method builds upon a standard VQ-VAE architecture for 3D MRI, intro-

ducing a modified quantization step based on Mahalanobis distance and k-nearest
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codebook selection. In this section, we describe the experimental setup, including

baseline line models used for performance comparison, model architecture, and train-

ing procedure (which closely follow prior VQ-VAE implementations except for our

novel quantization), and the datasets used for model training and evaluation.

For baseline methods, we adopt two state-of-the-art VQ-based models as base-

lines: (1) the morphology-preserving VQ-VAE introduced by Tudosiu et al. (2024)

and (2) an affine reparameterization approach proposed by Huh et al. (2023) to ad-

dress the codebook collapse issue. Both models address critical limitations of vanilla

VQ-VAE and are highly relevant for medical imaging tasks. The affine reparame-

terization method improves the gradient flow during codebook updates by replac-

ing the non-differentiable nearest neighbor operation with a learnable affine projec-

tion. The morphology-preserving model, on the other hand, integrates perceptual and

frequency-domain losses to ensure anatomical accuracy in brain MRI reconstructions,

making it a strong benchmark for evaluating structural fidelity. In both baselines,

we initialize the codebook using k-means clustering on encoder outputs, a common

strategy shown to promote better initial codebook diversity and mitigate early code-

book collapse (Zeghidour et al., 2021). These baselines represent two complementary

perspectives: optimization robustness and anatomical preservation, and together pro-

vide a rigorous standard against which to assess the benefits of our proposed locality-

constrained quantization.

4.4.1 Datasets

Similar to Sec.3.4.1, we prepared a lifespan cohort of healthy controls (HC) to train

the VQ-VAE model, aggregating MRI scans from public data sources: NACC, OASIS,

ICBM, ABIDE, and IXI. However, we modified our pre-processing pipeline2 along

2https://github.com/ysu001/PUP
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with an improved quality control and ensuring no subject overlap across training,

validation, and testing splits. Lifespan cohort consisted of 7, 932 T1w MRI scans

aged 18 to 93 years (60.41 ± 18.97 years). Whereas, the discovery cohort (mix of

healthy and unhealthy subjects) consisted of 9, 913 T1w MRI scans from the ADNI

database aged 49 to 98 years (75.22±7.45 years). Specifically, it consisted of 1,886 AD

patients (age: 76.54 ± 7.47 years), 4,345 mild cognitive impairment (MCI) patients

(age: 74.65 ± 7.71 years), and 3,450 healthy subjects (age: 75.43 ± 6.84 years). The

lifespan cohort included here has a major overlap with the cohort used in the previous

chapter (Sec.3.4.1). However, the discovery cohort compiled here has a significantly

larger number of samples for an in-depth analysis on AD/MCI samples. The number

of samples and age range per cohort are summarized in Tab.4.1.

All datasets were preprocessed and skull-stripped using FreeSurfer to rigidly reg-

ister all data to a common MNI space. The final images were cropped, resulting in

a head volume of 176 × 308 × 176 voxels with a voxel size of 1mm3. During train-

ing, the images were min-max normalised to [0,1] and ran through an augmentation

pipeline that consisted of random affine transformations, random contrast adjust-

ments, random intensity shifts, and random noise injections. The data augmentation

is based on MONAI2 version 0.5.3.

4.4.2 Implementation Details

Our proposed VQVAE-based method consists of an encoder E and D adopted from

(Tudosiu et al., 2024), which inherits from (Pinaya et al., 2022b). The encoder consists

of four downsamplings, with strided convolutions with stride 2 and kernel size 4, giving

the downsampling factor f = 24. The encoder maps input volumes X ∈ RH×W×D

to a latent representation Z ∈ Rh×w×d×nz , where h = H/16, w = W/16, d = D/16,

and nz = 256. This results in a compression factor of 4, 096. After the downsampling
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Table 4.1: Age Range with Distribution and Number of Samples for Each Cohort.

The Lifespan Cohort Comprises NACC, OASIS, ICBM, IXI, and ABIDE. Whereas

the Discovery Cohort Consists of Samples from the ADNI Cohort.

Dataset Count Age Range (yrs) Mean ± STD (yrs)

NACC 4,649 18 - 93 67.8 ± 11.1

OASIS 1,839 18 - 93 55.4 ± 25.1

ICBM 814 19 - 80 41.6 ± 15.2

IXI 529 20 - 86 48.5 ± 16.5

ABIDE 101 18 - 56 25.9 ± 7.6

ADNI 9,913 49 - 98 75.2 ± 7.5

layers, there are three residual blocks (3× 3× 3 Conv, ReLU, 1× 1× 1 Conv, ReLU).

The decoder mirrors the encoder and uses transposed convolutions with stride 2 and

kernel size 4. All convolution layers have 256 kernels. The codebook size was 2048

while each element’s size was 32. The encoder and decoder are interconnected with

each other with a non-differentiable quantization step and a codebook C.

To maintain codebook stability and prevent collapse, we adopt the exponential

moving average (EMA) update mechanism as described in Tudosiu et al. (2024).

However, we initialize the codebook using k-means clustering on the encoder out-

puts, ensuring a diverse and representative set of code vectors, which is used as a

baseline in recent VQ approaches (Zeghidour et al., 2021; Huh et al., 2023). Sim-

ilar to (Tudosiu et al., 2024), to ensure high-quality reconstructions and preserve

anatomical details, we employ a composite loss function comprising: MSE between

the input and reconstructed images, MSE between the amplitude spectra of the in-

put and reconstructed images, computed via fast Fourier transform (FFT)-to enhance
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the sharpness of reconstructions, learned perceptual image patch similarity (LPIPS)

loss using a pre-trained AlexNet model (given the 3D nature of the data, LPIPS is

computed slice-wise on randomly selected 2D slices from each anatomical plane-axial,

sagittal, coronal), and adversarial loss using a PatchGAN discriminator is employed

alongside a least squares GAN loss to encourage the generation of realistic intensity

patterns.

We train the VQ-VAE using the Adam optimizer with a learning rate of 1× 10−4

and a batch size of 6. The model is trained for 250 epochs, with early stopping based

on validation loss. Data augmentation techniques, including random rotations and

intensity scaling, are applied to improve generalization.

4.4.3 Evaluation

To quantify models’ reconstruction performance, we use MSE, MAE, and multi-

scale structural similarity index (MS-SSIM) in a pair-wise fashion between the gen-

erated synthetic samples as in earlier studies (Takida et al., 2022; Huh et al., 2023;

Tudosiu et al., 2024). MSE measures the average squared difference between the

original and reconstructed voxel intensities. It is sensitive to large deviations and

provides a direct measure of pixel-wise fidelity. Multi-Scale Structural Similarity In-

dex (MS-SSIM) assesses perceptual similarity by evaluating luminance, contrast, and

structural information across multiple spatial scales. Unlike MSE, which focuses on

absolute differences, MS-SSIM is more aligned with human perception and is par-

ticularly useful for measuring the preservation of anatomical structures (Zhao et al.,

2016). We also report MAE, which measures the average of the absolute differences

between reconstructed and ground truth voxel intensities, since it is less sensitive to

outliers than MSE.

To evaluate codebook usage and detect potential collapse, we leverage the per-
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plexity metric based on the entropy of the empirical code usage distribution across

a batch, whose upper bound is equal to the number of codebook vectors. Given a

distribution q over codebook entries, the perplexity is defined as:

codebook perplexity = exp

(
−
∑
i

qi log qi

)
Higher perplexity values indicate more uniform codebook usage, while lower values

suggest that only a small subset of codebook entries are being selected (i.e., potential

codebook collapse). Similar to Sec.3, MAE is used to evaluate performance on the

brain age prediction task. It measures the average absolute difference between the

predicted and chronological age of each subject. Lower MAE implies more accurate

predictions and better downstream utility of the compressed images.

To rigorously evaluate the effectiveness of our proposed Locality-Constrained Vec-

tor Quantization (LCVQ) method, we design a comprehensive set of experiments

across four model variants: (1) a standard VQ-VAE baseline (Tudosiu et al., 2024)

(2) VQ-VAE with affine reparameterization (AR) (Huh et al., 2023), (3) VQ-VAE with

our proposed LCVQ module, and (4) VQ-VAE incorporating both AR and LCVQ.

This setup allows us to disentangle the individual and combined contributions of

two complementary strategies: optimization-aware codebook learning (via AR) and

structure-aware quantization (via LCVQ). All models share the same backbone ar-

chitecture and training protocol to ensure fair comparison. Our rationale is to isolate

the effect of LCVQ in enhancing local structure preservation and its compatibility

with existing optimization improvements like affine reparameterization.

4.4.4 Downstream Task: Brain Age Prediction

To evaluate the utility of the compressed representations on downstream clinical

tasks, we train a regression model on the quantized image representations to predict
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brain age and compare it to a bigger model trained on raw imaging data for the same

task. ResNet-18 was used as the model backbone in both scenarios, and MSE loss was

used to update model weights. To compare the absolute performance at predicting

brain age of healthy subjects, we assess MAE on predicted vs. actual age on the test

of the lifespan cohort. And to further assess the generalization and disease detection

capabilities of these models trained using different approaches, we report MAE and

predicted brain age delta (predicted age - actual age) on discovery cohort consisting

of AD, MCI and healthy controls subjects (see Sec.4.4.1 for more details).

4.5 Results and Analyses

We compare the image reconstruction accuracy and codebook utilization of our

proposed quantization method to the baseline VQVAE framework for medical imaging

data (Tudosiu et al., 2024). The reconstruction accuracy at voxel-level is measured

by MSE, MAE, MS-SSIM, and codebook utilization is measured by perplexity of

latent variables (Sec.4.4.3). In Tab.4.2, VQVAE trained with LCVQ achieved best

reconstruction performance across all metrics and significantly higher codebook us-

age with and without affine reparameterization. This suggests that incorporating

statistical locality via Mahalanobis-based K-nearest quantization enhances the rep-

resentational precision of latent embeddings. Notably, while the AR+LCVQ variant

does not further improve reconstruction quality, it exhibits slightly higher codebook

utilization, as measured by perplexity. This implies that the affine reparameteriza-

tion mechanism may facilitate more effective exploration of the codebook space during

training, particularly when combined with LCVQ’s locality-aware soft assignments.

Taken together, these results suggest that LCVQ alone provides the greatest benefit in

terms of reconstruction, while the combination with affine reparameterization offers

marginal gains in codebook efficiency without compromising performance. Fig.4.1
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shows a qualitative comparison of raw imaging data before and after the proposed

quantization step.

Methods
MSE ↓

(10−3)
MS-SSIM ↑ Perplexity ↑

MAE↓

(10−2)

VQVAE 2.01 0.9421 66.5 1.75

VQVAE + AR 2.12 0.9419 63.1 1.80

VQVAE + LCVQ (k=15) 1.20 0.9684 368.9 1.43

VQVAE + AR + LCVQ (k=15) 1.52 0.9602 354.9 1.53

Table 4.2: Comparison Between Various Quantization Approaches on Image Recon-

struction Task. All methods use the same base architecture and codebooks (1024, 32)

were initialized with K-means across all implementations. AR: affine reparameteriza-

tion, LCVQ: locality constrained vector quantization.

Figure 4.1: Visual Comparison of Original T1w MRI Scans and Reconstructed MRI

Scans after Quantization Using the Proposed LCVQ Approach.
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For the downstream brain age prediction, we use the trained VQVAE + LCVQ

model and extract quantized representations of the same splits of imaging data from

the lifespan cohort used to train the model. Tab.4.3 illustrates the trade-off between

accuracy and efficiency in brain age prediction when using raw imaging data versus

quantized latent representations generated by our LCVQ model. The model trained

on raw 3D imaging achieves a marginally lower MAE of 5.10 years but requires ap-

proximately 4 days of training due to the high dimensionality and computational

demands of volumetric data. In contrast, the model trained on compressed LCVQ

representations completes training in under 15 minutes, with only a slight increase

in MAE to 5.32 years. This result underscores the effectiveness of the quantization

scheme: despite operating on a representation compressed by a factor of 4096, the

model retains competitive performance while achieving a 99% reduction in training

time. Moreover, the LCVQ encoder is trained offline and amortized across down-

stream tasks, making this pipeline particularly suitable for scenarios requiring rapid

model deployment, such as federated learning, continual monitoring, or low-resource

clinical settings (Xin and Fan, 2021). These findings demonstrate that this approach

can potentially offer a practical and scalable alternative to full-resolution modeling

without sacrificing substantial predictive accuracy.

More importantly, Tab.4.4 shows a comparative evaluation of brain age predic-

tion performance on an independent discovery cohort (ADNI), highlighting prediction

error (MAE) and aging-derived severity prediction (Brain Age Delta) across clini-

cal subgroups. Despite being trained on highly compressed LCVQ representations

(4096× reduction), the quantized model achieves comparable or improved accuracy

relative to the raw-imaging baseline across all subgroups. Specifically, the quantized

model attains a lower MAE in the MCI and HC groups (4.53 vs. 4.93; 4.29 vs.

4.58), and a modest reduction in overall MAE (4.73 vs. 5.00), demonstrating strong
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Data
MAE (yrs)

(on lifespan healthy test set)
Training time

Raw Imaging

(w/o quantization)
5.10 ∼4 days

Quantized Imaging

(w/ LCVQ quantization)
5.32 ∼15 minutes

Table 4.3: Comparison of Brain Age Prediction Performance on a Test of the Lifespan

Cohort, with and Without Quantization. Here, training time measures the time taken

solely to train the brain age prediction model.

generalization across cognitive states. Notably, while the MAE for AD subjects is

slightly higher in the quantized model (6.01 vs. 5.93), this reflects a desirable prop-

erty: increased deviation from chronological age in AD patients is consistent with

accelerated neurodegeneration, and thus, higher brain age error in this group may

indicate greater sensitivity to disease-related aging effects. Supporting this, the brain

age delta for AD increased from 3.01 to 3.43 years, while remaining close to zero for

MCI and HC. These findings affirm that LCVQ-based quantization preserves clini-

cally meaningful information despite extreme compression and improves the model’s

ability to detect pathological aging signatures while benefiting from faster training

and reduced storage.

4.5.1 Discussion

The proposed LCVQ introduces two main ideas: (i) using the Mahalanobis dis-

tance for codeword selection, and (ii) combining the top-K nearest codewords by

averaging to represent an encoding, combining adaptive metric learning and soft as-
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Data MAE (yrs) Brain Age Delta (yrs)

AD MCI HC ALL AD MCI HC ALL

Raw Imaging

(w/o quantization)
5.93 4.93 4.58 5.00 3.01 -0.14 -2.15 -0.21

Quantized Imaging

(w/ LCVQ quantization)
6.01 4.53 4.29 4.73 3.43 0.50 -1.56 0.36

Table 4.4: Comparison of Brain Age Prediction Performance on an Independent

Discovery Cohort (ADNI), with and Without Quantization. ResNet-18 models were

trained to predict brain age using MSE loss on raw imaging and quantized data.

Brain Age delta measures the (predicted age - actual age), and MAE measures its

absolute value on AD, MCI, and healthy control subjects. AD:alzheimer’s disease,

MCI:mild cognitive impairment, HC:healthy controls

signment.

Euclidean vs. Mahalanobis distance in Vector Quantization

Quantization with Euclidean distance (as in the standard VQ-VAE) works well if the

true data distribution in latent space is roughly spherical in all directions, but can

misbehave if the distribution is stretched or rotated. Quantization with Mahalanobis

distance can reduce quantization error because codebook vectors can specialize along

principal variance directions of the data instead of redundantly covering the same

high-density region. Empirical studies support this: for example, Younis et al. (1996)

introduced a VQ clustering algorithm with dynamically adjusted Mahalanobis dis-

tance and showed improved distortion performance on anisotropic data clusters. In

modern deep learning parlance, researchers have begun to explore richer distance met-
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rics for codebook learning. One approach is to treat codebook entries as Gaussian

centroids with covariance. For instance, GMVQ (Yan et al., 2024) models the latent

space as a mixture of Gaussians rather than point centroids. The distance in this case

is essentially a Mahalanobis distance to each Gaussian mean (with a shared or individ-

ual covariance). Such an approach was shown to mitigate codebook under-utilization

and drastically improve reconstruction error. The improvement stems from align-

ing the quantization metric with the data distribution. Compared to that, LCVQ’s

top-K averaging is a distinguishing feature: rather than modeling the posterior as

a categorical distribution (one code per latent) or mixture probability, LCVQ deter-

ministically blends multiple code vectors. This resembles a local linear reconstruction

of the latent, which is conceptually similar to locality-constrained coding in classical

vision (Yang et al., 2009).

This approach was also motivated by the intuition that latent features in MRI have

anisotropic distributions, where some directions in feature space are more important

to preserve precisely than others. By using the covariance-informed Mahalanobis

metric, the proposed quantizer learns which differences are significant. Our recon-

structions retained brain structure detail at a level where downstream analyses (like

brain age prediction) remained almost as accurate as with the original data. This is

promising for medical image compression as it suggests we do not necessarily have to

trade off analytical usefulness for compactness.

Previous efforts to improve VQ-VAE focused on codebook learning tricks or multi-

stage architectures, we instead revisited the fundamental distance measure for quan-

tization. Our approach required only a modest change to the quantization step and

a covariance calculation, yet yielded significant gains. In broader terms, it highlights

that distribution-aware representations can enhance both reconstruction and infer-

ence. In addition to brain age prediction, we anticipate that other tasks, such as
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disease classification (e.g., distinguishing AD vs healthy from compressed MRI) or

segmentation, would similarly benefit. Essentially, the compressed latent is equally,

if not more informative, and the reconstructions are more faithful, which should help

any downstream model that relies on neuroimaging patterns.

4.5.2 Future work

Ablation on Fixed-K Selection

We performed an ablation study to evaluate the influence of different fixed K val-

ues used for top-K averaging in the LCVQ framework. Specifically, we tested K =

5, 15, 25, 50, 75, 100 (see Tab.4.5. Results demonstrated consistently stable perfor-

mance across all tested values, indicating that the LCVQ method is robust with

respect to variations in neighborhood size. Nevertheless, minor variations suggested

a nuanced trade-off, where smaller K values risk limited neighborhood expressive-

ness, and larger K values may dilute locality, potentially reducing the effectiveness

of Mahalanobis weighting. These observations motivated us to investigate adaptive

strategies that dynamically select the optimal K value based on local data character-

istics. In the following section, we introduce and evaluate such an adaptive method

leveraging a chi-squared (χ2) statistical criterion.

Adaptive Neighborhood Selection via Chi-Square Thresholding (Future

Work

To explore more flexible neighborhood selection in our quantization scheme, we in-

vestigated an adaptive method that leverages the statistical properties of the Maha-

lanobis distance. The squared Mahalanobis distance between the query vector and
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K in

VQVAE+LCVQ

MSE ↓

(10−3)
MS-SSIM ↑ Perplexity ↑

MAE↓

(10−2)

K=5 1.40 0.9652 391.9 1.48

K=15 1.20 0.9684 368.9 1.43

K=25 1.21 0.9678 330.5 1.44

K=50 1.32 0.9679 329.2 1.42

K=75 1.32 0.9672 258.7 1.45

K=100 1.44 0.9627 295.3 1.55

Adaptive (K=15) 1.81 0.9544 316.94 2.09

Table 4.5: Ablation Study of the Top-k Parameter in the Lcvq Framework along with

an Adaptive k Selection Method. All methods use the same base architecture and

codebooks (1024, 32) were initialized with K-means across all implementations.

each codebook element is defined as:

d2M(x, ci) = (x− ci)
⊤Σ−1(x− ci)

Under the assumption that query vectors are approximately sampled from a mul-

tivariate normal distribution N (µ,Σ), it is known that this squared Mahalanobis

distance follows a chi-squared distribution with D degrees of freedom 3 :

d2M(x,µ) ∼ χ2
D

Based on this property, we define a statistical threshold τ 2 as the (1−α) quantile

of the chi-squared distribution:

τ 2 = χ2
D(1 − α)

3https://en.wikipedia.org/wiki/Mahalanobis distance
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This allows us to construct an adaptive neighborhood for each query vector:

Nτ (x) =
{
ci ∈ C

∣∣ d2M(x, ci) ≤ τ 2
}

Only codebook vectors whose Mahalanobis distance from the query is below this

threshold are selected for quantization. This provides a statistically grounded and

data-distribution-aware mechanism for codeword selection. To ensure robustness

when no codewords fall below the threshold, we implement a fallback to selecting

the top-K nearest codewords (e.g., K = 15). Preliminary experiments (see Tab.4.5

demonstrated that this adaptive method outperforms baseline methods but did not

surpass the performance of the carefully selected fixed K = 15 setting. One possible

explanation for this outcome is that the selected chi-squared threshold may either

be overly restrictive, leading to smaller-than-optimal neighborhoods. Or occasionally

overly inclusive, reducing the advantage of locality constraints. To fully assess the

potential of this adaptive approach, further experimentation is required, particularly

with varying upper limits on neighborhood size or more sophisticated statistical or

learned gating mechanisms. This investigation remains an important direction for

future work.

Evaluating LCVQ on Natural Image Datasets (Future Work)

We further evaluated our LCVQ method on natural image datasets CIFAR-10 and

MNIST to assess its generalizability and impact on codebook utilization (see de-

tailed quantitative results in Appendix E, Tab.E.1). Results demonstrated that while

reconstruction accuracy remained similar to baseline and affine reparameterization

methods, codebook utilization significantly increased. For instance, on CIFAR-10,

codebook utilization rose dramatically from around 5% at baseline to approximately

79% with LCVQ. Similar improvements were observed on the MNIST dataset. These
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findings suggest that LCVQ considerably improves the representational richness and

diversity of the learned codebook vectors. Higher perplexity implies enhanced uti-

lization of the codebook, enabling potentially more versatile embeddings for down-

stream tasks beyond direct reconstruction. Nevertheless, the absence of clear gains in

reconstruction fidelity highlights a nuanced trade-off and motivates future work to in-

vestigate strategies that leverage improved codebook utilization to explicitly enhance

reconstruction or downstream predictive performance.

Despite these promising initial findings, important questions remain regarding

the optimal neighborhood size (K) and adaptive selection criteria in different data

domains. Future work will investigate whether adaptive methods such as our chi-

square-based thresholding or alternative data-driven selection mechanisms can simi-

larly enhance quantization performance on general vision datasets. This exploration

is essential to fully understand the versatility and scalability of the LCVQ framework

beyond specialized medical imaging applications.

4.6 Conclusion

We show that locality constrained vector quantization (LCVQ), a structure-aware

quantization framework, can improve representation quality by incorporating statis-

tical locality into codeword selection. Results suggest that revisiting fundamental

assumptions in quantization, such as the choice of distance metric and the rigidity

of hard assignments, can lead to meaningful gains without increasing model com-

plexity. More broadly, this highlights how integrating data geometry into discrete

representation learning enables both efficient compression and better downstream per-

formance. While our experiments focused on brain MRI, the core principles of locality

and distribution-aware encoding could be applicable to multimodal fusion, federated

learning, and low-resource computing. In future work, we aim to explore dynamic or
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learned notions of locality, adapting LCVQ to non-Euclidean latent spaces, and in-

vestigate its role in tasks beyond compression, including out-of-distribution detection

and zero-shot transfer.
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Chapter 5

MRI-GUIDED PET SUPER-RESOLUTION

5.1 Motivation

The previous chapters introduced novel deep learning based techniques to ef-

fectively capture neuro-imaging-based aging patterns from T1-weighted MRI scans.

While MRIs quantify macroscopic atrophy patterns through brain age prediction,

amyloid PET captures the molecular pathology of amyloid-β (Aβ) plaques—a hall-

mark of AD that precedes structural changes by decades (Pontecorvo and Mintun,

2011). This duality mirrors the clinical progression of AD: amyloid accumulation

begins 15–20 years before symptom onset, while brain age deviations reflect later-

stage neurodegenerative processes. Due to the complementary roles of structural

MRI and amyloid PET in early detection of AD, in this chapter, we now extend our

investigation into the realm of multimodal imaging and how to best harness the com-

plementary strengths of MRI and PET modalities for early diagnosis and monitoring

of Alzheimer’s disease.

Specifically, amyloid imaging is a crucial tool in the diagnosis and research of

AD. It allows for the non-invasive detection of Aβ plaques in the brain, which is a

core neuropathological feature of AD (Chapleau et al., 2022). Detecting Aβ pathol-

ogy at the earliest stages of AD, before the onset of clinical symptoms, is critical

for understanding disease progression, developing intervention techniques, and po-

tentially improving patient outcomes. However, accurate quantification of amyloid

using positron emission tomography (PET) imaging is limited due to the low spatial

resolution of PET scans (Thomas et al., 2011), which is typically around 5 mm and
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varies across scanner models and reconstruction algorithms. This causes the partial

volume effect (PVE) (Hoffman et al., 1979), resulting in a spill-out of signal from

target gray matter regions and spill-in from surrounding areas. The magnitude of the

PVE depends on the size of the target region relative to the spatial resolution of the

scans. In the context of amyloid PET imaging, the size of the target regions varies

across subjects and often decreases as the subject ages or with disease progression.

Therefore, PVE reduces the accuracy, precision, and statistical power of quantitative

amyloid PET measurements. Another well-recognized issue of amyloid PET imag-

ing is harmonizing data acquired using different scanners, tracers, and analytical

pipelines. To minimize the inter-scanner variabilities, a scanner-specific harmoniza-

tion filter is often applied at the cost of further reduced spatial resolution (Joshi et al.,

2009). To minimize the variability of amyloid PET measurements from different an-

alytical pipelines, acquisition protocols, and tracers, a Centiloid scale was defined to

linearly transform a particular measurement to this scale (Klunk et al., 2015). How-

ever, this Centiloid approach is designed for standardizing global measures and does

not improve the between-measure agreements in terms of their shared variance (Chen

et al., 2024; Shah et al., 2022a, 2023a). We hypothesize that effective methods for

spatial resolution recovery will improve PET quantification and reduce inter-tracer

variabilities in amyloid PET measurements, and in this research, we propose a deep

learning approach to achieve the goal.

5.2 Related Works

5.2.1 Partial Volume Correction

Several partial volume correction (PVC) methods have been proposed in the lit-

erature to mitigate the PVE issue using anatomical information from MRI and CT
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(Thomas et al., 2011; Alessio and Kinahan, 2006; Baete et al., 2004; Erlandsson et al.,

2016; Meltzer et al., 1990; Müller-Gärtner et al., 1992; Rousset et al., 1998; Shidahara

et al., 2009). Different from that, Tohka and Reilhac (2008) showed that Richard-

son–Lucy, an iterative deconvolution-based method to recover spatial resolution in

PET imaging and an alternative to MR-based approaches, offered comparable ac-

curacy with reduced sensitivity to registration and segmentation errors. However,

deconvolution-based correction methods are shown to amplify the image noise (Golla

et al., 2017). Different correction methods can also produce varying results, mak-

ing standardization and comparison across studies challenging. Deep learning-based

techniques (Matsubara et al., 2022; Azimi et al., 2024) have recently been explored

to tackle some of these challenges. Deep models can better learn complex patterns

of tissue heterogeneity and can perform image denoising, potentially addressing noise

amplification issues (Azimi et al., 2024). Deep models trained on diverse datasets may

generalize better to different scanners and acquisition protocols (Matsubara et al.,

2022), potentially improving the standardization and consensus among multi-center

studies.

5.2.2 Image Super-Resolution

Instead of focusing on partial volume correction directly, as the PVC methods

reviewed above do, an alternative is image super-resolution (SR), which refers to the

task of rendering a high-resolution image from its low-resolution counterpart. We

contend that PVE may be tackled during the process of rendering high-resolution

PET from low-resolution PET. SR is a well-studied research problem in computer

vision and image processing (Moser et al., 2023; Ahmad et al., 2022). Use cases of SR

span a broad spectrum, improving existing computer vision tasks (Dai et al., 2016; Li

et al., 2022; Haris et al., 2021) by improving image spatial resolution and perceptual
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quality, improving surveillance (Rasti et al., 2016), and enhancing diagnostic accuracy

in medical research using different imaging modalities (Li et al., 2021b; Greenspan,

2009; Isaac and Kulkarni, 2015). Traditional methods for image SR heavily rely on

image statistics (Sun et al., 2008; Chang et al., 2004; Yang et al., 2010), which has

been shown to generate blurry and noisy artifacts in their high-resolution outputs

(Moser et al., 2023). With the advent of deep learning algorithms, several end-to-

end architectures have been proposed where the models learn the mapping of low-

resolution to high-resolution images through regression-based learning (Wang et al.,

2020). However, these methods fail to recover high-frequency details mainly because

they learn an average mapping from the training dataset (due to L1/L2 loss functions),

resulting in overly smooth model outputs and lacking spatial details (Ahmad et al.,

2022).

To address these limitations, generative models have been explored for SR in re-

cent years. Generative models learn to transform a latent variable z with a tractable

prior distribution to a learned data space. Generative adversarial networks (GANs),

flow-based methods, and diffusion models are three common generative models used

to generate synthetic data. They differ in their core approach: GANs (Goodfellow

et al., 2014) are trained in an adversarial setting with generator and discriminator

networks, flow-based methods (Rezende and Mohamed, 2015) rely on invertible trans-

formations to manipulate data distributions, while diffusion models (Ho et al., 2020)

iteratively add and then learn to remove noise to generate data. GANs are known to

suffer from mode collapse (Li et al., 2021a), resulting in unstable training and limit-

ing the diversity of generated samples. Flow-based methods can impose topological

constraints on the mapping between latent and data spaces, limiting their flexibility

in modeling complex data distributions (Zhang and Chen, 2021). Except for longer

sampling times, diffusion models have shown superior performance in generating high-
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fidelity medical imaging datasets (Khader et al., 2023; Müller-Franzes et al., 2023;

Pinaya et al., 2022a). Unlike GAN priors, diffusion model priors can preserve more

information to generate realistic data. Motivated by this, we propose an SR solution

based on the diffusion model to improve PET quantification.

The success of any SR methods (e.g., GAN, diffusion) heavily relies on the quan-

tity and quality of the training data. Synthetic data has been substantially useful in

medical AI research to alleviate issues such as a lack of datasets, annotations, pri-

vacy concerns, and high acquisition costs (D’amico et al., 2023; Rajotte et al., 2022;

Thambawita et al., 2022). Data samples are typically artificially generated using do-

main knowledge or modeling techniques to mimic the characteristics and structure of

real data without being directly derived from actual observations. It can be used to

train AI models where target data is unavailable or scarce and provides a promising

alternative to making AI models generalized to real-world datasets (Gao et al., 2023;

Wang et al., 2022; Lyu et al., 2022). These studies mainly focus on improving de-

tection and segmentation from high-resolution imaging. However, its applicability in

enhancing PET quantification remains unexplored. In this study,

1. We develop a new latent diffusion model for resolution recovery (LDM-RR)

in PET imaging (Shah et al., 2024a). Instead of training the diffusion model to

minimize loss on the noise scale, we introduce a composite loss function with

three terms: L1/L2, and MS-SSIM at the noise and image scale to improve

MRI-guided reconstruction.

2. We develop a synthetic data generation pipeline to generate PET digital phan-

toms mimicking high-resolution PET scans for model training.

3. We evaluate the performance of our LDM-RR model in improving the statistical

power of detecting longitudinal changes.
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4. We evaluate the ability of the LDM-RR model to improve the agreement of

amyloid PET measurements acquired using different tracers.

5.3 Proposed Framework

5.3.1 LDM-RR: MRI-guided PET Resolution Recovery

We use a latent diffusion model to generate synthetic high-resolution FBP scans

given standard low-resolution FBP and matching MRI scans. Fig.5.1 & Fig.5.2 give

an overview of the training process. Diffusion models have shown impressive results

in generating 2D images (Saharia et al., 2022). However, they are computationally

demanding at the training and inference stages. Medical imaging modalities, such as

MRI and PET, are more complex as they capture spatial information in 3D. Latent

diffusion models operate at a lower-dimensional latent space by compressing useful

information from these high-dimensional imaging data.

Our proposed LDM-RR is built upon a state-of-the-art LDM originally proposed

to generate 3D brain MRIs (Pinaya et al., 2022a). Specifically, it has a 2-stage train-

ing process and three different components: an encoder, a diffusion U-Net (Rombach

et al., 2022), and a decoder model. The encoder compresses high-dimensional data

into a low-dimensional latent representation, diffusion U-Net converts simFBP to

simDP in the latent space through a denoising process, and the decoder upsamples

the low-dimensional simDP to its original image space. Trained models and imple-

mentation code are made available for reproducibility and further research1 .

1https://github.com/jaygshah/LDM-RR
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5.3.2 Compression Models

The goal of the compression model is to create a compressed representation of

high-dimensional brain images that serve as the foundation for the subsequent diffu-

sion model. We use an autoencoder (Pinaya et al., 2022a) that compresses the 3D

brain images into a lower-dimensional latent representation, capturing the perceptual

representation of the original images while preserving essential features to reduce com-

plexity. In the first stage, we train three modality-specific 3D autoencoder models

separately for simFBP, simDP, and MRI (see Fig.5.1), each with a combination of L1

loss, perceptual loss, a patch-based adversarial objective, and a KL regularization of

the latent space (Pinaya et al., 2022a). The input to the encoder is a 3D image with

dimensions 256x256x256, and we extract smaller sub-volumes of size 64x64x64 to fit

in GPU memory. The encoder maps these sub-volumes to a latent representation of

size 16x16x16. Once trained, latent representations from these encoders are used as

inputs to the diffusion U-Net. See Sec.5.3.4 for more details on autoencoder model

architectures and hyperparameters used.

5.3.3 Diffusion Model

Diffusion U-Net in LDMs performs denoising by iteratively predicting and re-

moving noise in the latent space. Typically, they are trained to minimize the L2

loss between predicted and actual noise (Pinaya et al., 2022a; Rombach et al., 2022).

However, for super-resolution, we found that minimizing L2 loss does not consistently

guarantee the recovery of brain structure information in generated outputs (refer to

Fig.5.6(B)). Prior studies have shown that using a mix of image restoration losses can

produce high-fidelity images compared to single loss functions (Zhao et al., 2016). L2

regularization is sensitive to outliers and can introduce visual artifacts since it pe-

92



Figure 5.1: Training Three Modality-specific Autoencoder Models to Compress High-

dimensional Simulated DP, Simulated FBP, and MRI Data into a Lower-dimensional

Latent Representation.

nalizes high errors. L1, on the other hand, is robust to outliers but suffers from

non-differentiability at zero and slow training (Zou and Hastie, 2005). Moreover,

Zhao et al. (2016) showed that for image restoration and SR, L1 and L2 penalties fail

to capture structure information and proposed a multi-scale structural similarity in-

dex (MS-SSIM) metric. Voxel-level intensity has a high impact on PET quantification

(López-González et al., 2020).

Here, we hypothesize and show through the results that existing L2 loss-based

diffusion models (Ho et al., 2020) fail to provide a clinically accurate reconstruc-

tion of PET scans. A weighted combination of L1, L2, and MS-SSIM losses,

on the image and noise scales, can accurately generate a high-resolution image

using MRI and simFBP.

To train diffusion models, a small amount of Gaussian noise is progressively added
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to the data in T steps through a forward noise addition process, forming a Markov

Chain (equations 1 and 2) Ho et al. (2020):

q(z1:T |z0) =
T∏
t=1

q(zt|zt−1) (5.1)

q(zt|zt−1) = N (zt;
√

1 − βtzt−1, βtI) (5.2)

Here, βt is the fixed variance schedule and zt follows a pure Gaussian noise dis-

tribution after many forward diffusion steps T (T = 1000 in our experiments). The

diffusion U-Net learns the reverse diffusion process, i.e., denoising zT to z0 (equations

3 and 4), which can be formulated as (Ho et al., 2020):

pθ(z0:T ) = p(zT )
T∏
t=1

pθ(zt−1|zt) (5.3)

pθ(zt−1|zt) = N (zt−1;µθ(zt, t), σ
2
t I) (5.4)

zt =
√
αtz0 +

√
1 − αtϵ (5.5)

where µθ represents the denoising neural network (diffusion U-Net) and σ2
t =

1−ᾱt−1

1−ᾱt
βt. Traditionally, diffusion models are trained to predict the added noise in the

forward diffusion process by minimizing the L2 loss between the predicted noise (ϵ̂)

and the added noise (ϵ), formulated as (Rombach et al., 2022):

Lθ = Ex,ϵ∼N (0,1),t

[
||ϵ− ϵθ(zt, t)||22

]
(5.6)

Further, we can estimate the noise-free latent vector using the predicted noise (ϵ̂)

from the diffusion model using Equation 5 from Ho et al. (2020) as:
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ẑ0 =
zt −

√
1 − αtϵ̂√
αt

(5.7)

Zhao et al. (2016) observed that image reconstruction performance can be im-

proved by adding perceptual image metrics such as MS-SSIM in a network’s loss

function. This approach captures structural details at multiple scales while main-

taining voxel-level accuracy. While this holds true for current encoder-decoder archi-

tectures, to the best of our knowledge, it has not yet been investigated for denoising

diffusion networks in latent space.

Since our goal is to fuse structural information from T1-MRI to guide the recon-

struction, we modify LDM’s vanilla loss function (Lθ) on the noise scale to a weighted

combination of L2 and MS-SSIM loss on the image scale as:

loss1 = (1 − α)L2(z0, ẑ0) + αMS-SSIM(z0, ẑ0) (5.8)

Here α = 0.8 (Zhang et al., 2023b) in Equation 8 is an empirically set hyperpa-

rameter. We explored α = [0.2, 0.5, 0.8]. However, alpha = 0.8 resulted in the best

performance in reconstructing simDP on the simulated dataset’s validation set.

While L2 allows easier optimization in diffusion training due to its convergence

properties, it is known to produce an averaging effect, which forces the model to

predict values closer to the mean of the training data (Zhao et al., 2016). We argue

that using only L2 loss can help preserve whole image-level properties but may also

produce inaccurate estimates at the voxel level. To this end, we propose an L1 loss

at the noise scale to ensure voxel-level details are preserved in the denoising process:

loss2 = L1(ϵ, ϵ̂) = |ϵ− ϵ̂| (5.9)

A combined loss function using the two loss terms from Equations 8 and 9 is
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defined as:

losscombined = L1(ϵ, ϵ̂) + (1 − α)L2(z0, ẑ0) + αMS-SSIM(z0, ẑ0) (5.10)

This combined loss is equivalent to (see Appendix B):

losscombined = L1(ϵ, ϵ̂) + γ(1 − α)L2(ϵ, ϵ̂) + αMS-SSIM(z0, ẑ0) (5.11)

By minimizing loss on image (z) and noise (ϵ) scales, the LDM-RR model learns

to reduce the disparity between the reconstructed high-resolution PET image and the

target digital phantom while preserving image-level and voxel-level structural details.

The latter (voxel-level details) may play an important role in correcting partial volume

effects.

Fig.5.2 illustrates the second stage of training, where only the diffusion U-Net is

trained, whereas the encoder and decoder model parameters are kept frozen. The

input to the U-Net is a concatenation of the noisy latent representation of simDP

(zT (DP )) and the conditioning of matching MRI (zMR) and simFBP (zSP ) latent rep-

resentations. The model’s predicted noise (ϵ̂) can be used to estimate ẑ0(DP ) and

calculate the combined-loss (Equation 11), which is used to update the diffusion U-

Net parameters in each training epoch.

5.3.4 Implementation Details

Compression Models: Our compression models had a 3-layer 3D AutoencoderKL

architecture inspired from Pinaya et al. (2022a). We removed all attention layers

except at the model’s last level. The models had 32 base channels, with a channel

multiplier of [1, 2, 2] and only one residual block per level. Our latent space had a

dimensionality of 161616 with 3 latent channels. We trained our model over 80 epochs
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Figure 5.2: Proposed LDM-RR Framework’s Training Process for PET Super-

resolution. LDM is conditioned on latent representations of T1-MRI and simFBP

and uses a combination of image and noise scale losses to generate corresponding

high-resolution simDP.

with a minibatch of 60, with an Adam optimizer and a base learning rate of 0.0001.

We used a patch-based discriminator in our adversarial loss with 32 base channels

and a learning rate of 0.0001.

Diffusion Model: Our diffusion model uses a U-net architecture, with 32 base

channels, a channel multiplier of [1, 2, 2] and one residual block per level. The input

channels are 9 (3 channels each for simFBP, simDP, and MRI latents). We used

Adam optimizer with a base learning rate of 0.0001. In training, we used a DDPM

scheduler with 1000 timesteps, with a linear variance schedule, from 0.0015 to 0.0195.

At inference, we use a DDIM scheduler (Song et al., 2020a) with 250 timesteps, which

is a faster sampling method compared to DDPM while maintaining output quality.

Computational resources: All models were trained on a single NVIDIA A100 80

97



GB GPU. The inference time to generate a synthetic SR FBP was ∼10 minutes on a

GPU.

5.4 Experiment Design

5.4.1 Datasets and Simulation Procedure

Imaging data from three different cohorts were used in this study to enable our

experiments: 1) the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort2

(Weiner et al., 2017), 2) the Open Access Series of Imaging Studies-3 (OASIS-3) (La-

Montagne et al., 2019), and 3) the Centiloid Project florbetapir (FBP) calibration

dataset (Navitsky et al., 2018)3 . A subset of the ADNI database containing MRI

scans was utilized for data simulation to train the diffusion model, while another sub-

set with FBP scans (Tab.5.1) was employed to evaluate the model’s performance in

detecting longitudinal changes. Additionally, paired FBP-PiB imaging data from the

OASIS-3 and Centiloid databases (Tab.5.1) were used to further assess the model’s

performance in cross-tracer harmonization. Details regarding data selection and sim-

ulation are provided in the subsequent sections. The ADNI was launched in 2003 as

a public-private partnership led by Principal Investigator Michael W. Weiner, MD.

The original goal of ADNI was to test whether serial MRI, PET, other biological

markers, and clinical and neuropsychological assessment can be combined to measure

the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease

(AD). The current goals include validating biomarkers for clinical trials, improving

the generalizability of ADNI data by increasing diversity in the participant cohort,

and providing data concerning the diagnosis and progression of Alzheimer’s disease

to the scientific community.

2adni.loni.usc.edu

3http://www.gaain.org/centiloid-project
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Data to Train the Diffusion Model

We utilized 3,376 MRI scans randomly selected from the ADNI database to gen-

erate simulated high-resolution digital phantoms (simDP) and simulated florbetapir

(simFBP) using an MR-based procedure as previously described (Su et al., 2015)

and mimics the distribution of florbetapir (FBP) uptake in participants across a wide

range of amyloid burden and clinical status, and the noise and spatial resolution char-

acteristics of typical PET images. The specific set of MRIs selected as the basis for

simulation does not have a major impact on subsequent experiments and, therefore,

was not described in detail. The size of the dataset captures the overall distribution

and variability of structural brain differences in the elderly population without losing

generalizability. A detailed description of the simulation procedure is discussed in

section 2.2 below. From this simulated dataset, 3,038 samples were used to train, and

338 samples were used to validate our LDM-RR model’s performance.

Data for Evaluating Longitudinal Power

To evaluate LDM-RR’s ability to improve statistical power to detect longitudinal

changes in amyloid, we selected 167 ADNI participants with a mean age of 74.1 years

(SD=6.8), who are amyloid positive at baseline using a Centiloid cutoff of 20 (Royse

et al., 2021) and have two-year follow-up (2.0 ± 0.06 years interval) FBP scans. The

choice of these participants is to ensure they are on a trajectory to accumulate amyloid

during the study period, i.e., having a positive expected rate of amyloid accumulation.

Additional demographic information of this cohort is summarized in Tab.5.1.

Data for Evaluating Harmonization Performance

From the OASIS-3 database (LaMontagne et al., 2019), we identified 113 pairs of

FBP-PiB scans with a mean age of 68.1 years (SD=8.7), and similarly, 46 pairs
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Table 5.1: Summary of Demographic Information of the Three Cohorts Included in

This Study.

Cohort ADNI OASIS-3 (yrs) Centiloid

Sample Count 334 (167

baseline-followup

FBPs)

113 (FBP-PIB

pairs)

46 (FBP-PIB

pairs)

Age (SD) years 75.1 (6.9) 68.1 (8.7) 58.4 (21.0)

Education (SD) years 16.1 (2.7) 15.8 (2.6) N/A

Male (%) 182 (54.5%) 48 (42.5%) 27 (58.7%)

Cognitive Impairment

(%)

236 (70.6%) 5 (4.4%) 24 (52.2%)

APOE4+(%) 218 (65.3%) 38 (33.6%) 15 (46.9*%)

[*14 out of 46

unknown]

PET interval (SD)

years

2.0 (0.06) N/A 15 N/A

from the Centiloid project (Navitsky et al., 2018)4 with a mean age of 58.4 years

(SD=21.0). Refer to Tab.5.1 for demographic information of these two cohorts. Stud-

ies for the cohorts included here were approved by their corresponding institutional

review boards, and written informed consent was obtained for each participant.

4http://www.gaain.org/centiloid-project
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5.4.2 Image Analysis and Simulation

FreeSurfer v7.3 (Fischl, 2012) (Martinos Center for Biomedical Imaging, Charlestown,

Massachusetts, USA)5 was used to automatically segment T1-weighted MRIs to de-

fine the anatomical regions of interest (as defined in the wmparc.mgz file). PET

images were processed using a FreeSurfer-dependent pipeline that included resolu-

tion harmonization filtering, inter-frame motion correction, target frame summation,

PET-to-MR registration, and regional and voxel-wise SUVR calculation (Su et al.,

2015, 2013). A mean cortical SUVR (MCSUVR) was calculated as the summary

measure of amyloid burden and used to evaluate longitudinal and harmonization per-

formance (Su et al., 2013). For comparison purposes, a Richardson-Lucy algorithm

was adopted for resolution recovery (RL-RR) through iterative deconvolution (Lucy,

1974; Biggs and Andrews, 1997). In our experiment, the MATLAB (The Mathworks,

Inc., v2021a) function: deconvlucy6 was called with 20 iterations and an 8 mm full-

width-half-max (FWHM) Gaussian kernel to generate the deconvolved high-resolution

PET images and the corresponding MCSUVR estimation. Similar to previously de-

scribed by Su et al. (2015), the simulation of high-resolution digital phantom (DP)

and PET images (simFBP) was performed using segmented MRI as the input. For

DP generation, each voxel was assigned a specific intensity value according to tissue

type-specific distributions observed from actual FBP SUVR images across the aging

and AD spectrum. For non-brain voxels, i.e., those not defined in the wmparc.mgz

file, the voxel intensity was assigned by randomly scaling the normalized T1-MRI

images to simulate moderate non-brain uptake. To generate simFBP images, the DP

was smoothed and projected to the sinogram space, adding Poisson noise, and recon-

structed back to the image space. We generated the simulation with a range of noise

5https://surfer.nmr.mgh.harvard.edu/ fswiki

6https://www.mathworks.com/help/images/ref/deconvlucy.html
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levels as seen in real-world PET scans with a noise equivalent count rate (NECR) of

7526 kcps (Vandendriessche et al., 2019; Reynés-Llompart et al., 2017). The target

resolution of the simFBP data is 8mm in FWHM, approximating the resolution of

standardized PET data from ADNI (Joshi et al., 2009). Fig.5.3 shows a visual ex-

ample of a simulated digital phantom (B) and PET image (C) matching a T1-MRI

image (A).

Figure 5.3: Visualization of a Simulated Digital Phantom (SimDP) and Simulated

FBP (SimFBP) from the Data Simulation Pipeline Using T1-MRI and the LDM-RR

Generated Synthetic Super-resolution FBP.

5.4.3 Statistical Analysis

5.4.4 Simulated Data Analysis

To evaluate our LDM-RR’s actual performance at generating a high-resolution

FBP scan, we compare the mean recovery coefficient (RC), measured as the ratio of

synthetic high-resolution PET MCSUVR to that of ground-truth from simulated DP,

and variability measured by the standard error (SE). A value closer to one indicates

higher reconstruction performance. We compare our method to RL-RR, traditional
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LDM with L2 noise loss, LDM with L2 noise and L1 image loss, and simulated FBP

scans without any correction.

5.4.5 Longitudinal Analysis

To evaluate the longitudinal performance of the LDM-RR, for each of the 167

participants, the annualized rate of amyloid accumulation was calculated by dividing

the MCSUVR change from baseline to the follow-up visit by the follow-up interval,

commonly used in longitudinal PET studies (Bollack et al., 2024). The imaging

data were acquired using standard protocols, and harmonization procedures were

performed to reduce variability. The mean and standard deviation of the annualized

rate of change were evaluated for each analysis method, i.e., raw measurement, with

RL-RR, and with the LDM-RR. One-sample t-test (one-tail) was used to determine

whether the annualized rate was significantly greater than zero. A smaller p-value

is interpreted as having greater power to detect the longitudinal accumulation of

amyloid burden. To further compare the statistical power of different techniques in

a longitudinal setting, we estimated the number of participants per arm needed to

detect a 25% reduction in amyloid accumulation rate due to treatment with 80%

power and a two-tailed type-I error of p=0.05 in hypothetical anti-amyloid treatment

trials similar to previous studies (Su et al., 2016; Chen et al., 2015). A smaller

estimated sample size (SS) indicates greater statistical power.

5.4.6 Cross-tracer Analysis

In the cross-tracer analysis, we evaluated the impact of RL-RR vs. LDM-RR on

the agreement of PET-derived global amyloid burden, i.e., MCSUVR, using paired

FBP-PIB data from OASIS-3 and the Centiloid project. The imaging data were

also collected following standard protocols and underwent harmonization processes
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to minimize variability, similar to the ADNI study. In our experiment, the raw PIB

MCSUVR was used as the reference amyloid burden measurement, and we evaluated

whether the corrected FBP MCSUVR is more strongly correlated with PIB MCSUVR

using Steiger’s test. We also test whether the LDM-RR corrected FBP MCSUVR is

more strongly associated with PIB MCSUVR than the RL method.

5.5 Results and Analyses

5.5.1 Qualitative Assessments

Fig.5.4 showcases corrected FBP scans using RL (C) and LDM-RR (D) methods

in comparison to the real FBP scan without any correction (A). The proposed LDM-

RR model-generated synthetic FBP image has an improved spatial resolution, with a

similar level of anatomical details matching T1-MRI (Fig.5.4 (B)). A similar example

of LDM-RR applied to simulated data is shown in Fig.5.3 (D). Although RL-RR does

not require an MRI, it generated noisier images and was not able to fully recover

the high-resolution details (Fig.5.4 (C)). The LDM-RR method leverages the high-

resolution structural information from MRI to guide the super-resolution process,

resulting in PET images with reduced partial volume effects.

5.5.2 Evaluation on Simulated Data

A visual example of model-generated synthetic FBP from the test set of simulated

data is shown in Fig.5.3 (D). The mean RC from different diffusion models compared

to the RL-RR method and without any correction is shown in Fig.5.5. Our proposed

LDM-RR model was able to better reconstruct target simDP (0.96, SE=0.004, p <

0.001) compared to RL-based correction (0.82, SE=0.005, p < 0.001) and without

any corrections (0.76, SE=0.008, p < 0.001). It also performs significantly better
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Figure 5.4: Visual Comparison of Generated FBP Scans Using RL-RR and Our LDM-

RR to Real FBP and T1-MRI for a Sample from the OASIS-3 Cohort.

compared to a typical LDM architecture (Pinaya et al., 2022a) for super-resolution

(1.32, SE=0.08, p < 0.001) and other combinations of noise and image scale loss

(1.58, SE=0.09, p < 0.001). The improvement in recovery coefficient with LDM-RR

was also statistically significant (p < 0.001) compared to other LDM methods.

5.5.3 Evaluation on Real Longitudinal Amyloid PET Data

Tab.5.2 shows a comparison of statistical power to detect amyloid accumulation

in longitudinal studies using the LDM and RL methods for resolution recovery in

comparison to measurements from raw FBPs without any correction. The annualized

rate of amyloid accumulation was significantly greater than zero for all three methods

(p < 0.0001), suggesting an increase in brain amyloid burden over time as expected.

Notice that the annualized rate of amyloid accumulation is the unit of SUVR/year,

which is specific to the underlying quantification methods and not directly compara-

ble. Numerically, the p-value was smallest using the LDM-RR and largest without

any correction, suggesting our proposed method had the best power in detecting lon-

gitudinal changes. Additionally, the LDM-RR required a much smaller sample size

estimate to detect a 25% reduction in the amyloid accumulation rate due to treatment
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Figure 5.5: Comparison of Mean Recovery Coefficient (RC) Using Different Methods

on a Held-out Test of 338 Samples Randomly Selected from the Simulated Dataset.

A Value Closer to 1 Indicates High Performance.

in hypothetical anti-amyloid trials. To put the sample size estimation into context,

the recently completed TRAILBLAZER-ALZ2 randomized trial of donanemab (Sims

et al., 2023) recruited 860 participants for the treatment arm and 876 for the placebo

arm. The donanemab was able to reduce the patient’s brain amyloid burden by over

80%. Therefore, our assumed treatment effect is considerably more moderate.

5.5.4 Evaluation on Real Cross-tracer Amyloid PET Data

The performance of LDM-RR and RL-RR methods at harmonizing cross-tracer

global amyloid burden measurements is shown in Tab.5.3. Agreement of MCSUVR

measurements between tracers significantly improved (p < 0.001), as shown by a

higher correlation for both LDM and RL-based corrections to the reference measure.

The improvements in LDM-RR-based partial volume corrections compared to RL were
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Table 5.2: Statistical Power in Detecting Longitudinal Changes Measured by Mean,

Standard Deviation, and P-value of an Annualized Rate of Amyloid Accumulation

and Sample Size (SS) per Arm Estimates to Detect a 25% Reduction in Amyloid

Accumulation Rate Due to Treatment (80% Power and a Two-tailed Type-I Error of

P=0.05)

Annualized rate Raw RL-RR LDM-RR

Mean 0.0278 0.0377 0.0459

SD 0.0664 0.0807 0.0881

p-value 1.0e-07 5.0e-09 1.3e-10

SS 1431 1154 926

also statistically significant (p = 0.042). The results provide evidence supporting that

the inter-tracer variability in PET-derived amyloid burden measurement is at least

in part related to the partial volume effect associated with lower spatial resolution

and the contaminated signal from the target regions of interest. While the numerical

improvement in terms of the Pearson correlation is small, they were statistically

significant, suggesting that improving image resolution can be one of the strategies

for reducing the variability.

5.5.5 Discussion

It is well recognized that PET imaging has inherently low spatial resolution, which

leads to PVE, resulting in loss of sensitivity to focal changes and compromised ac-

curacy due to signal contamination (Rousset et al., 1998; Aston et al., 2002). Many

different techniques have been developed to account for PVE and improve quantita-

tive accuracy (Rousset et al., 1998; Tohka and Reilhac, 2008; Meltzer et al., 1999;
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Table 5.3: Comparison of RL and LDM-RR Methods in Improving the Mcsuvr Agree-

ment Between FBP and PIB Tracers Shown by Pearson Correlation and Steiger’s Test.

Method Pearson Correlation Steiger’s p-value

Without correction 0.9163 N/A

RL-RR 0.9308
<0.0001

(RL-RR vs. without correction)

LDM-RR 0.9411

0.0001

(LDM-RR vs. without correction)

0.0421

(LDM-RR vs. RL-RR)

Teo et al., 2007). In the context of PET neuroimaging, commonly adopted tech-

niques are often region-based and do not provide high-resolution images (Su et al.,

2015; Frouin et al., 2002; Rousset et al., 2008). Voxel-wise approaches do exist (Shi-

dahara et al., 2009; Tohka and Reilhac, 2008; Boussion et al., 2006); however, they

are known to amplify noise while having limited ability to recover the full spatial

resolution or have gone through limited evaluation for targeted applications (Thomas

et al., 2016; Gonzalez-Escamilla et al., 2017; Baker et al., 2017). This study presents

a new approach to improving PET quantification, leveraging latent diffusion mod-

els trained using controlled simulated data. We show that diffusion models have

a strong potential to enhance PET quantification through super-resolution. Our

LDM-RR model’s performance on longitudinal amyloid and cross-tracer PET data

demonstrates that diffusion-based super-resolution (SR) approaches can outperform

traditional approaches in tackling the issue of PVE in PET imaging.

We propose an alternative to L2 loss, which has been a de facto standard in train-
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ing diffusion models. L2 penalty pushes the model to reduce large errors, potentially

sacrificing high-frequency details (Fig.5.6 (B)). Moreover, L2 loss is sensitive to the

scale of voxel intensities. In super-resolution tasks, where the goal is to reconstruct

fine details (voxel-level), L2 loss may not be ideal for capturing subtle differences in

high-frequency information, whereas L1 loss may help capture the voxel-level details,

which are considered to be crucial to addressing PVE. In addition, it is interesting to

observe the added contribution from the multi-scale structural similarity index (MS-

SSIM) metric, which confirmed the research findings of Zhao et al. (2016). Visual

comparison in Fig.5.6 shows that using a combined loss at image and noise scales

(Fig.5.6(D)), the generated high-resolution FBP images have a more accurate repre-

sentation of brain structure from MRI and voxel-level uptake measurements.

Figure 5.6: Comparisons of the Results from LDM Trained Using Different Loss

Functions.

Simulation data was generated to approximate the PET imaging formation process

and the distribution of tracer uptake as observed in real amyloid PET images. The

simulated data were used to train the LDM-RR model and evaluate its performance

against the ground truth, which is otherwise not possible. It should be recognized

that simulated data cannot fully replicate the overall distribution and characteristics

of real amyloid PET data, which may introduce bias to the trained model. More
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sophisticated simulations can potentially be adopted to minimize this potential bias

and improve model performance. Nevertheless, evaluation of model performance in a

real-world setting is important, which we discuss further below.

We selected two commonly encountered scenarios in the investigation of Alzheimer’s

disease to evaluate the real-world utility and benefits of diffusion-based SR techniques

for PET. In the longitudinal analysis, we leveraged data from the ADNI cohort in

participants with a baseline visit and a 2-year follow-up to examine the sensitivity

and statistical power of different correction methods. The participants were inten-

tionally selected to have moderate to medium-high levels of pathological amyloid

burden at baseline to maximize the probability of these participants accumulating

amyloid plaques during the follow-up period, and therefore, we expect a positive in-

crease in the MCSUVR measure and deviation from that reflects measurement noise.

It is worth noting that both resolution recovery methods (RL-RR and LDM-RR) led

to greater numerical values of the rate of amyloid accumulation, which reflects the

improved recovery coefficient as expected. In the meantime, the standard deviation

of the estimated rate also increased numerically, which can be a combined effect of

the improved recovery coefficient and possible amplification of noise. The net effect

of the correction methods is reflected by the p-values of the one-sample t-test ap-

plied to the rate data, where a smaller p-value indicates a greater statistical power,

demonstrating a beneficial effect of correcting for PVE. The sample size estimation in

hypothetical anti-amyloid treatment trials further confirmed the notion that correct-

ing for PVE improves the longitudinal power. This improvement can lead to reduced

experimental costs in longitudinal observational studies and clinical trials, which will

facilitate treatment development. In a clinical setting, this improved power can lead

to better patient management by providing more sensitive and accurate monitoring

of disease progression once treatment becomes routinely available to patients. While
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we chose to demonstrate the capability of our proposed technique to improve the

quantitative analysis of clinical amyloid PET imaging data, the same principle and

method can also be applied to the analysis of preclinical animal PET data. Previous

studies have developed advanced algorithms for the analysis of preclinical PET data,

e.g., (Giaccone et al., 2022). Super-resolution methods, in general, and our proposed

LDM-RR technique specifically, can recover the high-frequency signals lost during

the image formation process by leveraging other sources of information, such as MR

or prior knowledge, such as a template, and improve the quantitative accuracy of

PET-derived measurements in both preclinical and clinical applications.

The second real-world application we tested in this study is the ability of PVE

correction to improve agreement between PET-derived measurements from different

tracers. Using amyloid PET imaging as an example, currently, there are at least

five different PET tracers that are widely used in research studies, clinical trials,

and patient management to measure amyloid burden. It is well recognized that the

different tracers behave differently, leading to discrepancies in PET-derived amyloid

burden measurements. At least part of this discrepancy is related to the contami-

nation of the target measurement from nuance signals’ spill-in to our measurements.

We demonstrated that both correction methods improved the agreement, and the

LDM-RR outperformed the RL method statistically. In the meantime, we recognize

the improvement has not reached the level where two tracers can be used interchange-

ably and may not outperform some of the other techniques we have developed (Chen

et al., 2024; Shah et al., 2022a). On the other hand, this experiment demonstrated

that PVE correction can be one of the strategies we can employ to improve harmo-

nization, and a combination of multiple techniques may be the ultimate solution to

fully solve the harmonization problem. We also acknowledge that there are other

approaches leveraging deep learning techniques to address issues related to the stan-
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dardization and harmonization of image-derived measurements, e.g. (Kanaujia et al.,

2024). Further investigation in this direction is warranted.

Recent studies have shown that integrating classifier-free guidance (CFG) in dif-

fusion models (Okada et al., 2024) can improve image super-resolution by suppress-

ing irrelevant diversity, balancing anatomical fidelity, and task-specific adaptability.

CFG’s core strength lies in its ability to dynamically modulate conditioning signals,

such as MRI priors, without relying on external classifiers, making it particularly

valuable in medical imaging where labeled data is sparse. For instance, β-CFG’s

adaptive guidance scaling proposed by Malarz et al. (2025) could optimize LDM-

RR’s MRI conditioning strength regionally and amplify guidance in cortical areas

vulnerable to PVE while reducing it in artifact-free zones to preserve tracer-specific

signals. This aligns with research done by Okada et al. (2024) in decomposing super-

resolution into sub-tasks (e.g., blind restoration, SR) and using CFG to prioritize

structural consistency. Although designed for anomaly detection, we can incorporate

methods like AnoFPDM (Che et al., 2025), where dynamic noise scale and threshold

tuning can be used to adaptively adjust diffusion steps and loss weighting during PET

reconstruction.

Limitations

This work has a few limitations: One potential limitation of our diffusion model-

based framework is the computational complexity to train and validate the model

on 3D imaging data. Even with a faster sampling method (Song et al., 2020a), the

inference time is considerably higher compared to other generative models. Due to

the sequential nature of the denoising process, this is a known limitation of diffusion

models and remains an active area of research. Second, the model was trained on

synthetic data rather than real data, which may limit the technique’s performance.
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This is primarily due to the fact that the approach we adopted requires paired data

with ground truth high-resolution images for training and validation, which is lacking.

Examination of methods that are self-supervised or semi-supervised may allow us to

overcome this limitation. We also like to point out that our intended application is

narrowly focused on AD-related applications, while the underlying principles can be

applied more broadly, although it will be beyond the scope of this paper.

5.6 Conclusion

We introduced a latent diffusion model-based resolution recovery method (LDM-

RR) to enhance PET image resolution and mitigate the impact of PVE. Results

demonstrate that the LDM-RR method improves spatial resolution while preserving

critical amyloid and anatomical information, outperforming traditional methods like

Richardson–Lucy (RL) correction. LDM-RR model showed superior performance at

reconstructing high-resolution PET images, improved statistical power for detecting

longitudinal amyloid accumulation, and a strong potential to improve the agreement

between measurements obtained from different PET tracers, contributing to better

data harmonization across multi-center studies. These findings suggest that diffusion-

based super-resolution techniques offer a promising alternative to conventional PVC

methods by overcoming noise amplification issues and achieving better image fidelity.

113



Chapter 6

FUTURE WORK & CONCLUSION

6.1 Future Work

The research presented in this dissertation opens several promising avenues for

future investigation. Building upon the methodological advancements herein, future

efforts will focus on extending the capabilities and applications of our core tech-

niques. For instance, the robust brain age prediction model developed in Chapter 3

could be advanced by incorporating multi-modal data sources: genetic, cognitive,

fluid biomarkers, or amyloid status (Ly et al., 2020); and by adapting it to delineate

disease-specific aging trajectories in various neurological conditions (Zhu et al., 2023).

For the MRI-guided super-resolution technique from Chapter 5, future work will aim

to generalize its application to other PET tracers and imaging modality pairs. The

main aim here would be to improve its robustness across diverse scanner environ-

ments through advanced domain adaptation and ensure longitudinal consistency for

reliable disease progression monitoring. The locality constrained vector quantization

framework (see Sec. 4.3) warrants further exploration into its theoretical properties

such as convergence behavior and optimal parameter selection, alongside its system-

atic evaluation across a wider array of medical imaging modalities beyond T1w-MRI,

and in non-medical domains requiring efficient and high-fidelity data compression.

For instance, introducing coarse-to-fine quantization levels could capture both global

anatomy and localized pathology within a single model (Takida et al., 2023).

A significant thrust of future research will be directed towards the clinical valida-

tion of these developed methodologies on in-house datasets. This includes the design
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and execution of prospective, longitudinal studies to affirm the clinical utility of the

robust brain age biomarkers. Additionally, investigating the synergies between the

developed techniques offers another promising research direction. For example, the

efficacy of using LCVQ-compressed data as input for the robust brain age prediction

framework or applying super-resolved PET data for more precise regional brain age

estimations could be systematically assessed. Moreover, the potential of LCVQ to

facilitate privacy-preserving federated learning by minimizing data transmission bur-

dens warrants investigation, potentially enabling collaborative model training across

institutions without compromising sensitive patient information.

It is also essential to acknowledge the inherent limitations and methodological

nuances of the developed techniques. While LCVQ offers a novel approach to quanti-

zation, considerations regarding the computational overhead of Mahalanobis distance

for extremely large codebooks and the sensitivity to covariance matrix estimation

require ongoing attention. For the brain age prediction framework, the interpretation

of brain age as a biomarker remains complex, and its deviation from chronological

age is influenced by a multitude of factors that necessitate careful consideration in

clinical contexts (Smith et al., 2019). While our robust brain age framework reduces

regression bias, the interpretability of ∆age as a biomarker remains complex. Recent

work demonstrates that cross-sectional ∆age conflates unvarying baseline traits with

true aging acceleration, limiting its prognostic value without longitudinal verifica-

tion (Smith et al., 2025). Future studies should prioritize multimodal decomposition

of aging processes and prospective validation to isolate clinically actionable signals.

Similarly, while the MRI-guided super-resolution significantly enhances image qual-

ity, the potential for introducing subtle algorithmically-induced artifacts that do not

reflect underlying biology, and the dependence on co-registration of the guiding MRI,

must be diligently evaluated to ensure diagnostic integrity (Markiewicz et al., 2021).
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We also acknowledge that the potential biases within training datasets can be learned

and amplified by these models, if not proactively addressed. This can lead to dispar-

ities in performance across different demographic groups. Moreover, the ”black box”

nature of some deep learning components also underscores the continuing need for

developing more interpretable AI models in medicine.

6.2 Conclusion

Although deep learning is poised to reshape neuro-imaging-based automated clini-

cal diagnosis over the next decade, its full clinical promise is still impeded by inefficient

representations and predictive models, along with issues of hardware-limited imaging

resolution. In this dissertation, we address each barrier through three tightly coupled

contributions that collectively advance data-efficient, biologically grounded analysis

of the aging and diseased brain.

• In Chapter 3, we introduced a novel framework designed to improve the reliabil-

ity of brain age estimation. By incorporating ordinal classification and distance

regularization, we aim to reduce the systematic bias of regression to the mean

in predicted brain age. This approach yields clinically more robust biomarkers

of brain health, offering potential for improved tracking of neurodegenerative

processes.

• Building on the need for efficient representations, Chapter 4 introduced Locality-

Constrained Vector Quantization (LCVQ) that leverages Mahalanobis distance

and local structure preservation to improve codebook utilization in VQ-VAE

models. By selecting multiple codebook entries based on local covariance and

applying adaptive sparsity, LCVQ achieves better latent encoding for medical

images compared to traditional approaches. This improved representation can
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preserve performance in downstream tasks, such as brain age prediction, and

addresses known issues of codebook collapse and inefficiency in prior VQ-based

models.

• Further expanding our contributions to quantitative imaging, in Chapter 5 we

introduced a generative modeling approach for improving the resolution and

accuracy of amyloid PET scans. By leveraging MRI data to guide the super-

resolution of PET images through latent diffusion models, the method sub-

stantially enhances the quantitative information available for assessing amyloid

burden, a key factor in the study and diagnosis of Alzheimer’s disease and re-

lated dementias. We believe this work is one of the first to address the issue

of partial volume effects in PET imaging using deep learning. The synergy be-

tween generative modeling and multimodal fusion provides a pathway toward

more precise and less invasive imaging protocols.
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Substituting z and ẑ0 from equations 5 and 7, loss1 can be simplified as:

loss1 = (1 − α)

∥∥∥∥zt −√
1 − αtϵ√
αt

− zt −
√

1 − αtϵ̂√
αt

∥∥∥∥2
2

+ α · MSSSIM(z0, ẑ0)

= (1 − α)

(
zt −

√
1 − αt√
αt

)
∥ϵ− ϵ̂∥22 + α · MSSSIM(z0, ẑ0)

= γ(1 − α) ∥ϵ− ϵ̂∥22 + α · MSSSIM(z0, ẑ0)

And substituting loss1, where γ = zt−
√
1−αt√
αt

in the combined loss equation we get:

losscombined = L1(ϵ, ϵ̂) + γ(1 − α)L2(ϵ, ϵ̂) + α · MSSSIM(z0, ẑ0)
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APPENDIX C

FIGURES FOR RIED-NET
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Figure C.1: Overall Architecture of RIED-Net. It uses a U-Net-like structure with a
residual inception shortcut to enhance training efficiency. It includes 5 encoding and
4 decoding blocks. Input is a 2D florbetapir image slice (256×256×1). Each block
processes data via 3×3 or 1×1 convolutions (ReLU), with skip connections between
corresponding encoder-decoder layers. The final layer outputs a synthetic 2D PiB
slice using a 1×1 convolution. Convolutional, deconvolutional, and copy operations
are represented with distinct arrows.
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Figure C.2: Visual Comparison of Synthetic Images Generated Using RIED-net to
Real Pittsburgh Compound-b (PIB) Data for the OASIS (Panels a and B) and GAAIN
(Centiloid Project; Panels C and D) Datasets Used in Our Study. Panels A and C
Show Representative Images from Amyloid Negative Participants, and Panels B & D
Are Examples from Amyloid Positive Participants. Abbreviations: FBP, Florbetapir;
SynPIB, Synthetic PIB.
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APPENDIX D

FIGURES FOR PHYSICAL ACTIVITY DATA
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Figure D.1: Classification of Decline Vs. Non-decline in the Cognitive Outcome
Variables, Presented by SHAP Plots for CG and IG.
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Figure D.2: (Same as the above Plot) Classification of Decline Vs. Non-decline in
the Cognitive Outcome Variables, Presented by SHAP Plots for CG and IG.
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RESULTS FOR LCVQ
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CIFAR-10, 1024 MNIST, 1024

Method MSE PER % Method MSE PER %

Baseline 0.054 4.980 Baseline 0.035 4.292
AR 0.054 4.590 Affine 0.034 6.333
LCVQ 0.055 76.450 LCVQ 0.032 73.938

CIFAR-10, 2048 MNIST, 2048

Baseline 0.054 2.441 Baseline 0.038 1.172
Affine 0.053 3.076 Affine 0.038 1.610
LCVQ 0.052 46.036 LCVQ 0.031 54.562

Table E.1: Comparison of Baseline Vqvae, Affine Reparameterization (AR), and Pro-
posed LCVQ Quantization Methods on CIFAR-10 and MNIST Datasets, Evaluated
by Mean Squared Error (MSE) and Codebook Utilization Using Perplexity (PER%).
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