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Abstract

Harnessing the power of deep neural networks in the
medical imaging domain is challenging due to the diffi-
culties in acquiring large annotated datasets, especially
for rare diseases, which involve high costs, time, and ef-
fort for annotation. Unsupervised disease detection meth-
ods, such as anomaly detection, can significantly reduce
human effort in these scenarios. While anomaly detec-
tion typically focuses on learning from images of healthy
subjects only, real-world situations often present unanno-
tated datasets with a mixture of healthy and diseased sub-
jects. Recent studies have demonstrated that utilizing such
unannotated images can improve unsupervised disease and
anomaly detection. However, these methods do not utilize
knowledge specific to registered neuroimages, resulting in
a subpar performance in neurologic disease detection. To
address this limitation, we propose Brainomaly, a GAN-
based image-to-image translation method specifically de-
signed for neurologic disease detection. Brainomaly not
only offers tailored image-to-image translation suitable for
neuroimages but also leverages unannotated mixed images
to achieve superior neurologic disease detection. Addition-
ally, we address the issue of model selection for inference
without annotated samples by proposing a pseudo-AUC
metric, further enhancing Brainomaly’s detection perfor-
mance. Extensive experiments and ablation studies demon-
strate that Brainomaly outperforms existing state-of-the-art
unsupervised disease and anomaly detection methods by
significant margins in Alzheimer’s disease detection using
a publicly available dataset and headache detection us-
ing an institutional dataset. The code is available from
https://github.com/mahfuzmohammad/Brainomaly.

1. Introduction
Deep neural networks have facilitated supervised learn-

ing from annotated datasets [22, 16], but acquiring large an-

notated medical imaging datasets, particularly for rare dis-

eases, is challenging. Even when enough imaging data are

available, manual annotation of such datasets is expensive,

laborious, and time-consuming as it requires domain expert

Figure 1. Overview of the proposed method, Brainomaly, for un-

supervised neurologic disease detection using unannotated mixed

T1-weighted brain MRIs. Brainomaly is a GAN-based image-to-

image translation method that is trained (Step 1 in the figure) to re-

move the diseased regions from any input brain MRI and generate

MRI of the corresponding healthy brain using (1) a set of “unan-

notated mixed brain MRIs” containing T1-weighted brain MRIs

from individuals with neurologic disease as well as healthy sub-

jects and (2) another set containing T1-weighted brain MRIs only

from healthy subjects. Once trained, the generator turns any brain

MRI into the MRI of the corresponding healthy brain (Step 2 in

the figure). Hence, subtracting (Step 3 in the figure) the generated

MRI of the healthy brain from its input would reveal structural

changes if the input MRI is of an abnormal brain. We use the aver-

age value of the resultant difference map as the disease detection

score, where higher values indicate a higher likelihood that the

brain MRI is from someone with a neurologic disease.

knowledge. In such scenarios, unsupervised disease detec-

tion methods like anomaly detection can help reduce the
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annotation burden and save significant human effort. Many

prior works in this area have focused on developing diag-

nostic models that learn to reconstruct images from healthy

subjects [11, 37, 38, 3, 43, 44, 1, 17, 36]. These meth-

ods rely on poor reconstructions of images from individuals

with diseases during inference for detection. However, in

practice, unannotated images are often available from indi-

viduals with diseases (mixed with healthy subject images)

in clinical databases or even as test sets where the trained

model will be applied, and leveraging the additional infor-

mation contained in these unannotated mixed images could

enhance disease detection.

With the same inspiration, [34] and [10] have recently

proposed methods that utilize such unannotated datasets of

mixed images during training for improved unsupervised

patient-level disease and anomaly detection. [10] trained

a set of autoencoders to reconstruct chest X-ray images

only from healthy subjects and another set of autoencoders

to reconstruct unannotated mixed X-rays from individu-

als with thoracic diseases and healthy subjects. Anomaly

detection scores were obtained by comparing the discrep-

ancies between these two sets of autoencoders. Con-

versely, [34] employed a GAN-based image-to-image trans-

lation approach [19, 18, 25, 13, 14, 35] to remove dis-

eased areas from input images and generate corresponding

healthy-looking images. The disease detection scores for

each subject were calculated by subtracting the generated

healthy-looking images from their corresponding input im-

ages. These methods, however, performed suboptimally for

neurologic disease detection (Tab. 1) and lacked a reliable

inference model selection criterion. [10] used the model

from the last training iteration for inference while [34] se-

lected model based on the realism of the generated images

using Fréchet inception distance (FID) [24]. We found that

the FID metric has a weak correlation with the underly-

ing classification performance of the model (see Sec. 6.3).

To address these issues, we propose Brainomaly, a GAN-

based image-to-image translation method specifically de-

signed for neurologic disease detection. Brainomaly learns

to remove neurologic disease from T1-weighted brain MRIs

and generates corresponding healthy MRIs. During train-

ing, it utilizes an unannotated set of mixed MRIs from

diseased and healthy individuals where traditional cycle-

consistency-based image translation is not applicable [34].

Since neuroimages are usually registered, we design Brain-

omaly to predict an additive map to transform input im-

ages into a healthy appearance instead of directly gener-

ating healthy images. The additive map contains voxel-

wise values representing the estimated changes required to

transform the input MRI into a healthy brain. We hypoth-

esize that this additive map-based translation, combined

with identity loss (Eq. 4) regularization, relaxes the need

for cycle-consistency-based image translation. For infer-

ence model selection, we introduce a pseudo-AUC (AUCp)

metric that further boosts the detection performance. Fig. 1

depicts an overview of the Brainomaly framework.

Through extensive experiments and ablation studies, we

demonstrate that Brainomaly outperforms existing state-of-

the-art unsupervised disease and anomaly detection meth-

ods by significant margins on one public dataset for

Alzheimer’s disease detection and one institutional dataset

for headache detection. Its superior performance is due to

the additive map-based image translation technique, lever-

aging unannotated images during training and employing

improved inference model selection using AUCp. In sum-

mary, we make the following contributions:

• We introduce a novel neurologic disease detection

method that utilizes unannotated T1-weighted brain

MRIs from individuals with neurologic disease and

healthy subjects.

• We propose a new metric, AUCp, for selecting a suit-

able model for inference when an annotated validation

dataset is unavailable.

• With two neuroimaging datasets, we perform extensive

experiments comparing the proposed method, Brain-

omaly, against the conventional state-of-the-art unsu-

pervised patient-level disease and anomaly detection

methods. Our detailed analysis proves the superiority

of the proposed method over existing methods.

• We evaluate the proposed method in both transductive

and inductive settings to match real-world scenarios.

• We empirically show that our proposed metric has a

higher correlation with the models’ underlying dis-

ease detection performances and selects a higher-

performing model than a model selected by FID, which

is commonly used in GAN model development.

2. Related Work
Our work is closely related to image-to-image transla-

tion, GAN-based anomaly detection, and neurologic dis-

ease detection. Hence, we review relevant existing efforts

on these tasks and contrast them with our proposed neuro-

logic disease detection method, Brainomaly.

2.1. Image-to-Image Translation

Plenty of work has been done on GAN-based image-

to-image translation [25, 27, 28, 31, 40, 42, 47, 48, 13, 2,

45, 23, 30, 32]. Pix2Pix [25] and CycleGAN [47] are pi-

oneer methods in this area. While Pix2Pix requires paired

input-output images for training, CycleGAN introduces the

concept of cycle consistency for unpaired image-to-image

translation. However, we cannot directly use CycleGAN in
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our work on unsupervised disease and anomaly detection

due to the lack of annotated diseased images.

Recent unpaired image-to-image translation meth-

ods [31, 40, 42, 47, 48, 13, 2, 45, 23, 30, 46], regardless

of cycle-consistency, also rely on image annotations. For

example, [40] utilizes two generators for translating images

of human faces between a pair of facial attributes. [2] pro-

poses an attention-based approach that performs image-to-

image translation like CycleGAN with two additional net-

works for generating attention maps. Alternatively, Star-

GAN [13], AttGAN [23], STGAN [30], and Fixed-Point

GAN [35] utilize one generator network that requires target

image annotations. A recent ensemble-based method [32]

offers an alternative to cycle consistency but demands mul-

tiple generator and discriminator networks, making it com-

putationally expensive and difficult to train.

In contrast, our Brainomaly method, which employs only

one generator and one discriminator network, overcomes

the need for cycle consistency by generating additive maps

instead of images. Furthermore, Brainomaly outperforms

existing anomaly detection methods, as shown in Sec. 6.

2.2. Anomaly Detection

In general, GAN-based anomaly detection methods [11,

37, 38, 3, 43, 44, 1, 17, 10] in the existing literature primar-

ily focus on learning from healthy images. These methods

aim to capture the underlying manifold of healthy images,

enabling their decoders to reconstruct only healthy images

during testing. Consequently, when diseased images are

reconstructed as healthy, the disparity between the input

and output images indicates the presence of anomalies. We

elaborate on a few examples below.

Chen et al. [11] employ an adversarial autoencoder

to learn the distribution of healthy data. They identify

anomalies by subtracting the reconstructed diseased image

from the input image. In a similar vein, [37] proposes a

method that adversarially learns a decoder model to gener-

ate healthy images from random noise vectors in the latent

space. During testing, this approach maps new images to

the latent space through iterative updates of the latent vec-

tor. If a new image is healthy, the method is expected to find

the actual latent vector that reconstructs the input image, re-

sulting in a negligible difference between the input and re-

constructed images. Conversely, for diseased images, the

method should find a latent vector that produces the clos-

est healthy image, leading to a higher difference between

the input and reconstructed images. The authors propose an

anomaly score that combines the reconstruction error and

the discrimination score from the discriminator network.

Schlegl et al. [38] enhance the speed of [37] by introduc-

ing an encoder network capable of mapping input images to

the latent space in a single pass. Likewise, [3] employs a

GAN to learn a generative model of healthy data. It involves

scanning images pixel-by-pixel and feeding the cropped re-

gions to a trained GAN discriminator. An anomaly map

is then constructed by combining the anomaly scores pro-

vided by the discriminator. Zenati et al. [43, 44] utilize Bi-

GAN [15] to jointly train an encoder and a decoder network

to learn the mapping of normal images. Like most methods,

they use the reconstruction error as the anomaly score.

Akcay et al. [1] train an autoencoder supervised with

both image-level L1 distance and adversarial loss using only

normal images. Additionally, they train an extra encoder

to map the images reconstructed by the autoencoder back

to their latent space. In a different approach, [17] trains

an encoder network to map normal images to a Gaussian

distribution and abnormal images to an out-of-distribution

region using adversarial learning. Anomalies are then de-

tected using the Mahalanobis distance in the latent space.

It is important to note that this method requires annotated

anomalous images during training.

In contrast, [34] and [10] learn from unannotated images

of both diseased and healthy individuals, similar to our pro-

posed method as discussed in Sec. 1. However, in Sec. 6,

we demonstrate that our method significantly outperforms

these existing methods by a large margin.

2.3. Neurologic Disease Detection

Numerous studies have explored deep learning tech-

niques for automated Alzheimer’s disease diagnosis using

raw imaging data. Most of these studies focus on super-

vised classification tasks, while a few employ unsupervised

anomaly detection methods [9, 21, 7, 26, 5, 12]. For in-

stance, Cabreza et al. [9] train a GAN on healthy images,

followed by an encoder that returns a vector for input im-

ages like [38]. MADGAN [21] leverages MRI slice con-

tinuity in reconstruction and uses high reconstruction loss

for anomalous image classification. Baydargil et al. [7] in-

corporate a parallel feature extractor within a GAN using

PET images, while Choi et al. [12] employ a variational au-

toencoder on PET images for abnormality scoring based on

reconstruction error. Jin et al. [26] use an adversarial au-

toencoder for unsupervised data characterization of healthy

controls and subsequent Alzheimer’s disease vs. healthy

control classification. Bai et al. [5] combine a classifier

with GAN training, incorporating high-level feature extrac-

tion and posterior class probabilities.

Except for [5], the aforementioned approaches rely

solely on healthy images for GAN training and utilize

high reconstruction loss to detect anomalies. In con-

trast, our method leverages both unannotated mixed im-

ages and healthy images during training, leading to superior

Alzheimer’s disease detection than state-of-the-art methods.

Regarding headache detection from structural MRI

scans, we found no unsupervised approaches in the lit-

erature. Only a few studies employ deep learning tech-
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niques for this task. Rahman Siddiquee et al. [33] de-

velop a ResNet-based binary classification model for auto-

mated biomarker extraction of headache sub-types. Yang et
al. [41] proposes a deep convolutional neural network us-

ing pre-processed resting-state fMRI data to distinguish be-

tween migraine and healthy controls. However, both stud-

ies are supervised classification tasks and suffer from lim-

ited datasets, which is common in headache classification

using deep learning. Thus, our method enhances unsu-

pervised headache detection by utilizing unannotated MRIs

from both headache and healthy subjects.

3. The Proposed Method: Brainomaly

Fig. 1 depicts the overview of the proposed method. This

section presents details about the neural network models,

their training process, selecting the inference model with

the proposed AUCp metric, and neurologic disease detec-

tion using the outputs from these models.

3.1. The Networks

Brainomaly consists of a discriminator network and a

generator network. The discriminator network follows

PatchGAN [25, 29, 47] architecture and is similar to the

ones used in [13, 35, 34]. Our discriminator distinguishes

whether a T1-weighted brain MRI is real or generated.

The generator network is an encoder-decoder type ar-

chitecture similar to the generator networks used in [13,

35, 34]. As input, the network takes a T1-weighted brain

MRI of any subject without knowing whether the subject is

healthy or has a neurologic disease. As output, it generates

an additive map where each voxel contains the value of an

estimated required change to turn the brain in the input MRI

into a healthy brain. The final healthy-brain MRI is gener-

ated by first summing the input MRI and the additive map

voxel-wise, then applying tanh activation on the resultant.

Both our generator and discriminator networks operate

on 2D MRI slices. The generated healthy-brain MRI is

constructed by stacking the generated MRI slices as they

appeared in the input MRI. The architecture details for both

these networks are provided in the Appx. A.2.

3.2. Training the Networks

Fig. 2 provides a detailed schema for training the gen-

erator and discriminator networks of Brainomaly. We train

the generator and the discriminator network alternately, like

any GAN model. At each training step, we update the gen-

erator’s weights once for every two weight updates of the

discriminator network and repeat them until convergence.

The role of the discriminator network is to improve the

generator network by providing iterative feedback during

training. At each iteration (Step 1 in Fig. 2), the discrimi-

nator network learns to distinguish the real MRIs of healthy

brains and the generated MRIs from the previous iteration’s

generator. During the generator training, it provides feed-

back so that the generator can improve the quality of the

generated MRIs. To be able to perform this role, the dis-

criminator is trained on a set of T1-weighted healthy brain

MRIs, H (Fig. 1), to classify them as real, as well as on

generated MRI slices to classify them as fake. During dis-

criminator training, the generator solely uses MRIs from

the unannotated mixed set M (Fig. 1) to generate MRIs of

healthy brains, excluding any MRIs from set H as MRIs

of healthy brains are already present in M . The training

objective is achieved using an adversarial loss (Eq. 1).

LD
adv = ExM∈M [

log(1−Dreal/fake(tanh(xM +G(xM ))))]

+ ExH∈H [log(Dreal/fake(xH))]

(1)

Here, xM and xH are MRI of random subjects from M
and H , respectively. The generator’s output, which is the

generated MR images of a healthy brain, is denoted as

G(.). The discriminator network’s output is represented by

Dreal/fake(.). We revised Eq. 1 based on the Wasserstein

GAN [4] and added a gradient penalty [20] with weight λgp

to enhance training stability. The revised training objective

is shown in Eq. 2 where x̂ is a random weighted average of

a batch of real and generated MRIs.

LD
adv = ExM∈M [Dreal/fake(tanh(xM +G(xM )))]

− ExH∈H [Dreal/fake(xH)]

+ λgp Ex̂[(||�x̂Dreal/fake(x̂)||2 − 1)
2
]

(2)

On the other hand, the generator aims to generate realis-

tic MRIs of healthy brains by utilizing the discriminator’s it-

erative feedback (Step 2 in Fig. 2). For training, it translates

MRI from both M and H sets and updates the generated

MRIs of healthy brains iteratively and gradually so that the

discriminator fails to distinguish the generated MRIs from

the real ones. For the set of unannotated mixed MRIs (M ),

if the input is an MRI containing a neurologic disease, then

the generator is expected to remove the diseased regions and

generate the MRI of a corresponding healthy brain. If the

input is already an MRI of a healthy brain, the generator

is expected to behave like an autoencoder; that is, it is ex-

pected to generate exactly the same input MRI in output.

As MRIs in set M are unannotated, we used the adversar-
ial loss for generating the corresponding MRIs of healthy

brains. The loss is defined as in Eq. 3.

LG
adv = −ExM∈M [Dreal/fake(tanh(xM +G(xM )))] (3)

For the set of healthy-brain MRIs (H), we explicitly train

the generator to be an autoencoder using the identity loss
(defined in Eq. 4) for these MRI slices.

Lid = ExH∈H [||tanh(xH +G(xH))− xH ||1] (4)
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Figure 2. A training iteration in Brainomaly involves two steps: (1) the training of the discriminator and (2) the training of the generator.

The discriminator is taught to identify the difference between real images and those generated by the generator. Meanwhile, the generator

attempts to create indistinguishable images from real images to trick the discriminator. The iteration is repeated multiple times during the

training phase to improve the realism of the generated images.

Combining all these losses, the final full objective func-

tion for the discriminator and generator can be described

by Eq. 5 and Eq. 6, respectively.

LD = LD
adv (5)

LG = LG
adv + λidLid (6)

where λid is the relative importance of the identity loss.

3.3. Detecting the Diseases

We detect diseases from the MRIs using disease detec-
tion scores. To get these scores, we translate all the given

brain MRIs to MRIs of healthy brains using a trained gen-

erator model of Brainomaly (Step 2 in Fig. 1). Then, we

subtract the generated MRIs of healthy brains from their

corresponding input MRIs (Step 3 in Fig. 1). If the brain

in the input MRI is diseased (i.e. abnormal), the resultant

difference map would reveal structural changes. The differ-

ence map should reveal less or no structural changes for an

input MRI of a healthy brain. We call the voxels showing

the structural changes as activations. The average of all the

activations in the difference map of an input MRI is its dis-
ease detection score, where a higher score indicates a higher

likelihood of the input brain being diseased.

3.4. Inference Model Selection using AUCp

As discussed in Sec. 3.2 and Fig. 2, Brainomaly learns

iteratively from the given T1-weighted brain MRIs, gener-

ating multiple model checkpoints each after a fixed number

of iterations. In a supervised learning setting, these models

would be evaluated on a small validation dataset, and the

best-performing model would be selected for inference and

disease detection. However, annotated validation dataset is

unavailable in our problem setting. Therefore, we use our

proposed AUCp metric for model selection. To calculate

AUCp, we first generate the disease detection scores for

each model, as discussed in Sec. 3.3. As we already know

that the set H contains only healthy-brain MRIs, we assume

the labels for MRIs in the unannotated mixed brain MRI set,

M , to be diseased brains. Then, we use these imperfect an-

notations as ground truths along with the disease detection

scores in the traditional AUC calculation resulting in AUCp

scores. Once the AUCp scores are available for all the mod-

els, we select a model with the highest AUCp score for in-

ference. In Sec. 6.3, we have also shown that AUCp sets

a better-performing model for inference compared to FID,

commonly used in existing works [34]. Appx. A.1 shows a

schematic diagram for the AUCp calculation.

4. Datasets
4.1. Alzheimer’s Disease Dataset

The Alzheimer’s disease dataset was obtained from the

ADNI database (adni.loni.usc.edu), which is a large-scale

public repository of clinical, neuropsychological, behav-

ioral, genetic, and neuroimaging data to track the progres-

sion of Alzheimer’s disease dementia. Using data from 3

studies that ADNI offers, ADNI-1, ADNI-2, and ADNI-

GO, we collected and processed T1 MRI scans of 536

Alzheimer’s disease patients and 1271 healthy controls.

We randomly selected 501 MRIs from healthy controls

for our experiments for the healthy brain MRI set (H). We

created two unannotated mixed brain MRI sets (M ): AD
DS1 and AD DS2. Each contains 268 MRIs from patients

with Alzheimer’s disease and 385 MRIs from healthy con-

trols. Splitting the dataset helps us evaluate the proposed

Brainomaly for Alzheimer’s disease detection in both trans-

ductive and inductive settings in Sec. 6.3.

All 3D MRIs in this dataset were registered to the

MNI152 1mm template and skull stripped. We converted

the 3D MRIs and saved them as 2D sagittal slices. The pro-

posed Brainomaly method performs a prediction for each

2D slice. We aggregated the slice-level predictions by aver-

aging them for patient-level predictions during evaluation.

4.2. Headache Dataset

We collected MRIs of 96 individuals with migraine, 48

with acute post-traumatic headache (APTH), 49 with persis-

tent post-traumatic headache (PPTH), diagnosed according

to the International Classification of Headache Disorders

(ICHD) diagnostic criteria, and 104 healthy controls from
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Mayo Clinic. We extended our dataset with MRIs of 428

healthy controls from the publicly available IXI dataset [8].

For our experiments, we trained our model by combin-

ing all headache types into one group first and then inves-

tigated each subgroup’s performance separately in the post-

analysis. We randomly selected 232 MRIs of healthy con-

trols for the healthy brain MRI set (H). We created two

unannotated mixed brain MRI sets (M ): HEAD DS1 and

HEAD DS2. Each contains an equal number of MRIs for

migraine (n = 48), APTH (n = 24), and healthy controls (n =

150). 24 out of 49 MRIs of those with PPTH were included

in HEAD DS1 and the rest in HEAD DS2. Similar to the

experiment on Alzheimer’s disease’s dataset, such splitting

helps evaluate the proposed Brainomaly for headache detec-

tion in both transductive and inductive settings in Sec. 6.3.

All 3D MRIs in this dataset were registered to the

MNI152 1mm template and skull stripped. We converted

the 3D MRIs and saved them as 2D sagittal slices. We ag-

gregated the slice-level predictions by averaging them for

patient-level predictions during evaluation.

5. Experiments
We evaluated our proposed Brainomaly on Alzheimer’s

disease (Sec. 6.1) and headache (Sec. 6.2) detec-

tion comparing with six state-of-the-art unsupervised

disease/anomaly detection methods. Among these,

DDAD [10] and HealthyGAN [34] also utilize unan-

notated mixed images like Brainomaly. On the other

hand, ALAD [44], ALOOC [36], f-AnoGAN [38], and

Ganomaly [1] learn only from images of healthy sub-

jects. In addition, we analyzed Brainomaly’s performance

in transductive and inductive learning settings, provided an

ablation study of the object functions, and compared our

proposed AUCp metric with FID (Sec. 6.3).

All of our models operate on 2D MRI slices. We used 2D

sagittal slices for all experiments. We performed a central

crop to remove empty regions outside the brain, resulting in

192× 192 sagittal slices for both datasets. We used λid = 1

and a batch size of 16. We trained the models for 400,000

iterations and saved a model for AUCp calculation after ev-

ery 10,000 iterations. We have used Adam optimizer with a

1e−4 learning rate. The learning rate has been decayed for

the last 100,000 iterations.

6. Results and Analyses
6.1. Alzheimer’s Disease Detection

Tab. 1 compares Brainomaly’s Alzheimer’s disease de-

tection performance on both AD DS1 and AD DS2 data with

six state-of-the-art methods. AD DS1 and AD DS2 columns

report the numbers when these data were used as an unseen

test set. Brainomlay outperforms the existing methods by

a large margin, achieving an average Alzheimer’s disease

Figure 3. Qualitative results of Alzheimer’s disease and headache

detection by Brainomaly. The left two columns display the results

of Alzheimer’s disease detection experiments, while the right two

columns depict the outcomes of headache detection experiments.

As expected, Brainomaly exhibits higher activations in the differ-

ence map for diseased subjects in comparison to healthy subjects,

which is the base for its disease detection.

detection AUC of 0.6550. Among the competing meth-

ods, f-AnoGAN performed the best. It achieved an aver-

age AUC of 0.6020, which is 8.09% less than the proposed

Brainomaly. Ganomaly and DDAD performed close to f-

AnoGAN, achieving average AUC of 0.5956 and 0.5926,

respectively. The rest of the competing methods performed

like random guesses. Fig. 3 (left) shows Brainomaly’s qual-

itative results for Alzheimer’s disease detection. As seen,

the difference maps for subjects with Alzheimer’s disease

have higher activation than that of healthy subjects. Re-

ceiver operating characteristics (ROC) curve analyses are

provided in Appx. A.3.

6.2. Headache Detection

Tab. 1 also compares Brainomaly’s headache detection

performance on both HEAD DS1 and HEAD DS2 data with

six state-of-the-art methods. Like Alzheimer’s disease de-

tection, Brainomaly also outperforms the competing meth-

ods in headache detection by a large margin. It achieved

an average headache detection AUC of 0.8960. Perform-

ing 13.84% less than Brainomaly, HealthyGAN achieved

the second-best average AUC of 0.7720. Other baseline

methods like ALAD, Ganomaly, and DDAD achieved even

poorer AUCs of 0.0.7653, 0.6913, and 0.6280, respectively.

f-AnoGAN and ALOOC just failed in this task.

Brainomaly also performed better in detecting headache

sub-types. On HEAD DS1, it achieved a precision of 0.9375

(3 incorrect out of 48) in migraine detection, 0.3750 (15
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Training Data Methods Alzheimer’s Disease Dataset Headache Dataset
AD DS1 AD DS2 Average HEAD DS1 HEAD DS2 Average

Healthy Only

ALAD [44] 0.5329 0.5239 0.5284 0.7819 0.7486 0.7653

ALOOC [36] 0.4670 0.4746 0.4708 0.3044 0.6566 0.4805

f-AnoGAN [38] 0.5946 0.6093 0.6020 0.4354 0.3925 0.4071

Ganomaly [1] 0.5864 0.6048 0.5956 0.7313 0.6514 0.6913

DDAD [10] 0.5897 0.5955 0.5926 0.6128 0.6431 0.6280

Healthy +
HealthyGAN [34] 0.4598 0.5468 0.5033 0.7107 0.8333 0.7720

Unannotated Mixed

HealthyGAN (AUCp) 0.5905 0.6034 0.5970 0.8276 0.7899 0.8088

Brainomaly (FID) 0.6389 0.6453 0.6421 0.9002 0.8589 0.8796

Brainomaly (AUCp) 0.6452 0.6648 0.6550 0.9041 0.8878 0.8960
Table 1. Comparison of Brainomaly’s performance with state-of-the-art anomaly detection methods on Alzheimer’s disease and headache

detection on unseen test sets using AUC metric. Numbers in boldface indicate the best results, and underlined numbers indicate the

second-best results. As seen, Brainomaly outperforms all the existing state-of-the-art methods for neurologic disease detection. The rows

“HealthyGAN (AUCp)” and “Brainomaly (FID)” are for ablation study purpose only (see Sec. 6.3).

(a) Transductive vs. Inductive Learning

Alzheimer’s Disease Dataset
AD DS1 AD DS2 Avg. p-value

Transduc. 0.6526 0.6825 0.6676
0.555

Inductive 0.6452 0.6648 0.6550

Headache Dataset
HEAD DS1 HEAD DS2 Avg. p-value

Transduc. 0.9182 0.8633 0.8908
0.873

Inductive 0.9041 0.8878 0.8960

(c) FID vs. AUCp: Correlation with AUC

Alzheimer’s Disease Dataset
AD DS1 AD DS2

FID 0.5701 0.4773

AUCp (Our) 0.9583 0.9656
Headache Dataset

HEAD DS1 HEAD DS2
FID 0.5227 0.3187

AUCp (Our) 0.9528 0.5986

(b) Importance of Identity Loss

Alzheimer’s Disease Dataset
AD DS1 AD DS2

Transduc.
Brainomaly 0.6526 0.6825
−Lid 0.6303 0.6815

Inductive
Brainomaly 0.6452 0.6648
−Lid 0.6521 0.6455

Headache Dataset
HEAD DS1 HEAD DS2

Transduc.
Brainomaly 0.9182 0.8633
−Lid 0.7824 0.8091

Inductive
Brainomaly 0.9041 0.8878
−Lid 0.8073 0.8359

(d) FID vs. AUCp: Detection Performance

Alzheimer’s Disease Dataset
AD DS1 AD DS2

Transduc.
FID 0.618 0.6771

AUCp (Our) 0.6526 0.6825

Inductive
FID 0.6389 0.6453

AUCp (Our) 0.6452 0.6648
Headache Dataset

HEAD DS1 HEAD DS2

Transduc.
FID 0.8807 0.9120
AUCp (Our) 0.9182 0.8633

Inductive
FID 0.9002 0.8589

AUCp (Our) 0.9041 0.8878
Table 2. These ablation studies of different components of Brainomaly show its (a) generalization ability on both unannotated seen and un-

seen datasets, (b) effectiveness of the objective function, and (c–d) superiority of the proposed AUCp metric for inference model selection.

incorrect out of 24; see discussion) in APTH detection, and

0.9600 (only 1 incorrect out of 25) in PPTH detection. On

HEAD DS2, it achieved a precision of 0.9167 (4 incorrect

out of 48) in migraine detection, 0.6667 (8 incorrect out of

24) in APTH detection, and 0.9583 (only 1 incorrect out of

24) in PPTH detection.

Fig. 3 (right) shows Brainomaly’s qualitative results for

headache detection. Similar to Alzheimer’s disease detec-

tion, the difference maps for subjects with headaches have

higher activation than those for healthy subjects. ROC curve

analyses are provided in Appx. A.3.

6.3. Ablation Studies

Comparison of Image-to-Image Translation. To bet-

ter understand the contribution of Brainomlay’s additive

map-based image-to-image translation, we have compared

it with HealthyGAN [34] by keeping the network architec-

ture, data-split, and inference model selection metrics the

same. The results summarized in Tab. 1 show that Braino-

maly consistently outperformed HealthyGAN across tasks

irrespective of inference model selection metrics.

Transductive vs. Inductive Learning. Using an unanno-

tated set of mixed brain MRIs (Fig. 1) allows Brainomaly
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to operate in transductive and inductive learning modes.

Therefore, we evaluate our proposed Brainomaly in both

learning settings. For the transductive learning setting, we

evaluate Alzheimer’s disease and headache detection on the

unannotated mixed brain MRI set used during training. In

contrast, for the inductive learning setting, we utilize an ad-

ditional unseen test set for Alzheimer’s disease detection

and headache detection evaluation. Please note that the per-

formance reported in Tab. 1 and analyzed in the previous

two subsections were in inductive settings.

Tab. 2a summarizes Brainomaly’s performance for

Alzheimer’s disease and headache detection in both trans-

ductive and inductive learning settings. The average perfor-

mance of Brainomaly for Alzheimer’s disease and headache

detection is statistically the same (p-value > 0.005) in both

transductive and inductive learning settings. These results

show that Brainomaly generalizes well on unseen test data.

Impact of Identity Loss on Objective Function. Inspired

from [35], we incorporated the identity loss (Lid in Eq. 4) to

balance the image translation. As seen in Tab. 2b, Lid plays

an important role in Brainomaly’s image translation and sig-

nificantly improves its performance for both Alzheimer’s

disease and headache detection.

Inference Model Selection—FID vs. AUCp. In Tab. 2c,

we have shown that our AUCp score proposed in Sec. 3.4

has a stronger correlation with the actual (when all the anno-

tations are available) AUC scores. Therefore, the proposed

AUCp metric renders itself a better metric than FID for se-

lecting the model for inference. Please note that Tab. 2c

reports absolute correlation values. To further validate, we

have provided the AUC scores obtained by the best models

according to FID and the AUCp scores in both transductive

and inductive learning settings for each dataset in Tab. 2d.

It is evident from the figure that the models selected by our

AUCp metric dominate in detection performance over the

models selected by FID.

7. Discussion
The proposed Brainomaly method aims to perform

patient-level neurologic disease detection without requir-

ing brain image annotation. Though it generates the dif-

ference maps showing structural changes in Alzheimer’s

disease and headache subjects (Fig. 3), these maps are not

precise. They show more structural changes than actual

changes performed by the underlying diseases; as a re-

sult, they are not useful for precise localization. If needed,

weakly-supervised localization methods such as GradCAM

[39], Fixed-Point GAN [35], and VAGAN [6] can be uti-

lized for better localization using the patient-level detec-

tions from Brainomaly as weak annotations.

The proposed AUCp metric does not guarantee the selec-

tion of the best possible model for inference as it uses im-
perfect annotations. However, our empirical analyses show

that AUCp generally selects a better inference model than

the popular FID metric.

In Sec. 6.2, we have seen that APTH detection using

Brainomaly is not as good as detecting other headache sub-

types. This might be due to the acuity of the condition and

greater heterogeneity in brain structural changes amongst

these individuals compared to those who have had long-

standing migraine or PTH (i.e., those with PPTH). Among

the 15 misclassified APTH subjects in HEAD DS1, we

found 5 were recovered at a 3-month time point. This

improves the APTH detection rate from 0.3750 to 0.5833.

Similarly, in HEAD DS2, 1 out of 8 misclassified subjects

recovered at a 3-month time point, improving the detection

rate from 0.6667 to 0.7083. Future studies are needed to

explore the heterogeneity amongst those with APTH.

Using images from healthy individuals is common in

unsupervised anomaly detection literature [1, 36, 38, 44].

Our method leverages an unannotated mixed dataset with-

out added annotation costs. Besides, images of healthy in-

dividuals are readily accessible in Picture Archiving and

Communication Systems (PACS), making our proposed

method, Brainomaly, virtually annotation cost-free to train.

8. Conclusion
In conclusion, the proposed unsupervised neurologic

disease detection method, Brainomaly, is highly effective

in detecting Alzheimer’s disease and headaches from T1-

weighted brain MRIs, outperforming existing state-of-the-

art methods by a large margin. This performance is at-

tributed to Brainomaly’s additive map-based image trans-

lation, the capability of utilizing unannotated mixed brain

MRIs, and better inference model selection using the pro-

posed AUCp metric. Using an unannotated set of mixed

brain MRIs enables Brainomaly to operate in both transduc-

tive and inductive learning modes, providing flexibility in

its application. In addition, we have shown in Tab. 1 that the

AUCp can select better models even for existing methods,

for example, HealthyGAN. We believe the proposed Brain-

omaly method can be generalized for unsupervised disease

detection from other organs and modalities, which we aim

to study in our future work.
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